Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Fork of Robotics_LAB_UART by
main.cpp
- Committer:
- tea5062001
- Date:
- 2017-04-06
- Revision:
- 1:db577024d9ab
- Parent:
- 0:d41917b28387
File content as of revision 1:db577024d9ab:
#include "mbed.h"
#define Ts 0.01f //period of timer1 (s)
#define Kp 0.005f
#define Ki 0.02f
Ticker timer1;
Ticker timer2;
Serial bt(D10, D2); // TXpin, RXpin
// servo motor
PwmOut servo_cmd(A0);
// DC motor
PwmOut pwm1(D7);
PwmOut pwm1n(D11);
PwmOut pwm2(D8);
PwmOut pwm2n(A3);
// Motor1 sensor
InterruptIn HallA(A1);
InterruptIn HallB(A2);
// Motor2 sensor
InterruptIn HallA_2(D13);
InterruptIn HallB_2(D12);
// servo motor
float servo_duty = 0.025; // 0.069 +(0.088/180)*angle, -90<angle<90
// 90度->duty=0.025; 0度->duty=0.069; -90度->duty=0.113
int angle = 0;
int counter;
//RX
int readcount = 0;
int RX_flag1 = 0;
int RX_flag2 = 0;
char getData[6] = {0,0,0,0,0,0};
short data_received[3] = {0,0,0};
short data_received_old[3] = {0,0,0};
//函式宣告
void init_TIMER();
void timer1_ITR();
void timer2_ITR();
void init_UART();
void RX_ITR();
void init_IO();
void init_CN();
void CN_ITR();
void init_PWM();
// Hall sensor
int HallA_1_state = 0;
int HallB_1_state = 0;
int state_1 = 0;
int state_1_old = 0;
int HallA_2_state = 0;
int HallB_2_state = 0;
int state_2 = 0;
int state_2_old = 0;
// DC motor rotation speed control
int speed_count_1 = 0;
float rotation_speed_1 = 0.0;
float rotation_speed_ref_1 = 0;
float pwm1_duty = 0.5;
float PI_out_1 = 0.0;
float err_1 = 0.0;
float ierr_1 = 0.0;
int speed_count_2 = 0;
float rotation_speed_2 = 0.0;
float rotation_speed_ref_2 = 0;
float pwm2_duty = 0.5;
float PI_out_2 = 0.0;
float err_2 = 0.0;
float ierr_2 = 0.0;
int main()
{
init_PWM();
init_CN();
init_TIMER();
init_UART();
while(1) {
}
}
void init_TIMER()
{
timer1.attach_us(&timer1_ITR, 10000.0); // the address of the function to be attached (timer1_ITR) and the interval (1000 micro-seconds)
timer2.attach_us(&timer2_ITR, 10000.0);
}
void init_UART()
{
bt.baud(115200); // baud rate設為115200
bt.attach(&RX_ITR, Serial::RxIrq); // Attach a function(RX_ITR) to call whenever a serial interrupt is generated.
}
void timer1_ITR()
{
// 避免收到錯誤資料,若超出設定範圍則用上次的資料
if(data_received[0]>300 || data_received[0]<-300 || data_received[1]>300 || data_received[1]<-300 || data_received[2]>90 || data_received[0]<-90) {
data_received[0] = data_received_old[0];
data_received[1] = data_received_old[1];
data_received[2] = data_received_old[2];
} else {
data_received_old[0] = data_received[0];
data_received_old[1] = data_received[1];
data_received_old[2] = data_received[2];
}
rotation_speed_ref_1 = data_received[0];
rotation_speed_ref_2 = (-1)*data_received[1];
}
void RX_ITR()
{
while(bt.readable()) {
static char uart_read;
uart_read = bt.getc();
if(uart_read == 127 && RX_flag1 == 1) {
RX_flag2 = 1;
} else {
RX_flag1 = 0;
}
if(RX_flag2 == 1) {
getData[readcount] = uart_read;
readcount++;
if(readcount >= 5) {
readcount = 0;
RX_flag2 = 0;
///code for decoding///
data_received[0] = (getData[2] << 8) | getData[1];
data_received[1] = (getData[4] << 8) | getData[3];
data_received[2] = getData[5];
///////////////////////
}
} else if(uart_read == 254 && RX_flag1 == 0) {
RX_flag1 = 1;
}
}
}
void init_PWM()
{
servo_cmd.period_ms(20);
servo_cmd.write(servo_duty);
pwm1.period_us(50);
pwm1.write(0.5);
TIM1->CCER |= 0x4;
pwm2.period_us(50);
pwm2.write(0.5);
TIM1->CCER |= 0x40;
}
void init_CN()
{
HallA.rise(&CN_ITR);
HallA.fall(&CN_ITR);
HallB.rise(&CN_ITR);
HallB.fall(&CN_ITR);
HallA_2.rise(&CN_ITR);
HallA_2.fall(&CN_ITR);
HallB_2.rise(&CN_ITR);
HallB_2.fall(&CN_ITR);
}
void CN_ITR()
{
// motor1
HallA_1_state = HallA.read();
HallB_1_state = HallB.read();
///code for state determination///
state_1 = 10*HallA_1_state + HallB_1_state; //state = AB (ex:A=1,B=0, state_1 = 10)
if(state_1_old != state_1)
{
if((state_1_old/10) == (state_1_old%10))
{
if((state_1%10) != (state_1_old%10))
{
speed_count_1++;
}
else if((state_1/10) != (state_1_old/10))
{
speed_count_1--;
}
}
else if((state_1_old/10) != (state_1_old%10))
{
if((state_1%10) != (state_1_old%10))
{
speed_count_1--;
}
else if((state_1/10) != (state_1_old/10))
{
speed_count_1++;
}
}
state_1_old = state_1;
}
//////////////////////////////////
//forward : speed_count_1 + 1
//backward : speed_count_1 - 1
// motor2
HallA_2_state = HallA_2.read();
HallB_2_state = HallB_2.read();
///code for state determination///
state_2 = 10*HallA_2_state + HallB_2_state; //state = AB (ex:A=1,B=0, state_1 = 10)
if(state_2_old != state_2)
{
if((state_2_old/10) == (state_2_old%10))
{
if((state_2%10) != (state_2_old%10))
{
speed_count_2++;
}
else if((state_2/10) != (state_2_old/10))
{
speed_count_2--;
}
}
else if((state_2_old/10) != (state_2_old%10))
{
if((state_2%10) != (state_2_old%10))
{
speed_count_2--;
}
else if((state_2/10) != (state_2_old/10))
{
speed_count_2++;
}
}
state_2_old = state_2;
}
//////////////////////////////////
//forward : speed_count_2 + 1
//backward : speed_count_2 - 1
}
void timer2_ITR()
{
// servo motor
///code for sevo motor///
counter = counter + 1;
if(counter == 100)
{
servo_duty = 0.069;
}
if(counter == 200)
{
servo_duty = 0.0763;
}
if(counter == 300)
{
servo_duty = 0.0837;
}
if(counter == 400)
{
servo_duty = 0.091;
}
if(counter == 500)
{
servo_duty = 0.0983;
}
if(counter == 600)
{
servo_duty = 0.106;
}
if(counter == 700)
{
servo_duty = 0.113;
}
if(counter > 700)
{
counter=0;
}
servo_cmd.write(servo_duty);
/////////////////////////
if(servo_duty >= 0.113f)servo_duty = 0.113;
else if(servo_duty <= 0.025f)servo_duty = 0.025;
servo_cmd.write(servo_duty);
// motor1
rotation_speed_1 = (float)speed_count_1 * 100.0f / 12.0f * 60.0f / 29.0f ; //unit: rpm
speed_count_1 = 0;
///PI controller for motor1///
err_1 = rotation_speed_ref_1 - rotation_speed_1;
ierr_1 = ierr_1 + err_1*Ts;
PI_out_1 = Kp*err_1 + Ki*ierr_1;
//////////////////////////////
if(PI_out_1 >= 0.5f)PI_out_1 = 0.5;
else if(PI_out_1 <= -0.5f)PI_out_1 = -0.5;
pwm1_duty = PI_out_1 + 0.5f;
pwm1.write(PI_out_1 + 0.5f);
TIM1->CCER |= 0x4;
//motor2
rotation_speed_2 = (float)speed_count_2 * 100.0f / 12.0f * 60.0f / 29.0f; //unit: rpm
speed_count_2 = 0;
///PI controller for motor2///
err_2 = rotation_speed_ref_2 - rotation_speed_2;
ierr_2 = ierr_2 + err_2*Ts;
PI_out_2 = Kp*err_2 + Ki*ierr_2;
//////////////////////////////
if(PI_out_2 >= 0.5f)PI_out_2 = 0.5;
else if(PI_out_2 <= -0.5f)PI_out_2 = -0.5;
pwm2_duty = PI_out_2 + 0.5f;
pwm2.write(PI_out_2 + 0.5f);
TIM1->CCER |= 0x40;
}
