lab 1 code

Dependencies:   CMSIS-DSP_for_STM32F746G BSP_DISCO_F746NG

Revision:
30:debea332cdfe
Parent:
26:023edf8cea6c
Child:
31:5a0235b66851
--- a/main.cpp	Wed Jan 01 23:20:43 2020 +0000
+++ b/main.cpp	Fri Jan 03 20:15:03 2020 +0000
@@ -21,49 +21,62 @@
 #include "stm32746g_discovery_lcd.h"
 #include "signal_processing.h"
 
+/* The following type definitions are used to control the 
+ * buffering of the audio data using a double buffering technique.
+ * Most of the transactions between the WM8994 and the microcontroller
+ * are handled by other code - but this signals what the buffering state
+ * is, so the data can be appropriately processed. */
 typedef enum {
     BUFFER_OFFSET_NONE = 0,
     BUFFER_OFFSET_HALF = 1,
     BUFFER_OFFSET_FULL = 2,
 } BUFFER_StateTypeDef;
 
+/* These audio block samples define the size of the buffering */
 #define AUDIO_BLOCK_SAMPLES             ((uint32_t)128)         // Number of samples (L and R) in audio block (each samples is 16 bits)
 #define AUDIO_BLOCK_SIZE                ((uint32_t)512)         // Number of bytes in audio block (4 * AUDIO_BLOCK_SAMPLES)
 
+/* These RAM addresses are important to determine where the audio data is stored. */
 #define SDRAM_DEVICE_ADDR_AUDIO_MEM     ((uint32_t)0xC0400000)
 #define AUDIO_BUFFER_IN                 SDRAM_DEVICE_ADDR_AUDIO_MEM
 #define AUDIO_BUFFER_OUT                (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE * 2))
 
+/* These definitions define the size of the oscilloscope that is used to display data. */
 #define OSC_START_X_POS     20
 #define OSC_LINE_SIZE       256
 #define OSC_Y_POS           110
 #define AUDIO_DRAW_LIMIT    30
 
+/* This define a timer that is then used to record the timing of the different processing stages. */
 Timer timer;
 
+/* This variable is important because it define the audio buffer recording state. */
 volatile uint32_t  audio_rec_buffer_state = BUFFER_OFFSET_NONE;
+
+/* Function declarations */
 static void Erase_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t Length);
 static void Draw_Trace(uint16_t Xpos, uint16_t Ypos, uint16_t* Mem_start, uint16_t Length);
 static void Audio_to_Float(uint16_t* buffer_in, float* L_out, float* R_out, uint16_t Length);
 static void Float_to_Audio(float* L_in, float* R_in, uint16_t* buffer_out, uint16_t Length);
 
-/* To do conversion to float */
+/* These memory blocks are important for converting to floating point representation. */
 float       L_channel_float[AUDIO_BLOCK_SAMPLES];
 float       R_channel_float[AUDIO_BLOCK_SAMPLES];
 float       *L_channel_float_p = &L_channel_float[0];
 float       *R_channel_float_p = &R_channel_float[0];
 
-/* Back conversion to integer */
+/* These memory blocks are where the information is stored to send back out to the WM8994 chip. */
 uint16_t    Processed_audio[AUDIO_BLOCK_SAMPLES];
 uint16_t    *Processed_audio_p = &Processed_audio[0];
 
 /* Useful variables during looping */
-uint32_t counter = 0;
-char buf[40];
-int first_half_time = 0;
-int second_half_time = 0;
-int total_time = 0;
+uint32_t counter = 0;               // Loop counter
+char buf[40];                       // Character buffer for sprintf statements to the LCD
+int first_half_time = 0;            // Time of first processing block
+int second_half_time = 0;           // Time of second processing block
+int total_time = 0;                 // Time of total loop (first and second blocks)
 
+/* Main Function */
 int main()
 {
     /* Initialize the LCD Screen and display information */    
@@ -71,41 +84,57 @@
     BSP_LCD_LayerDefaultInit(LTDC_ACTIVE_LAYER, LCD_FB_START_ADDRESS);
     BSP_LCD_SelectLayer(LTDC_ACTIVE_LAYER);
 
+    /* Clear the LCD and set the font to be default */
     BSP_LCD_Clear(LCD_COLOR_BLACK);
     BSP_LCD_SetFont(&LCD_DEFAULT_FONT);
-        
+    
+    /* Set the backcolor to be black and the textcolor to be orange. */    
     BSP_LCD_SetBackColor(LCD_COLOR_BLACK);
     BSP_LCD_SetTextColor(LCD_COLOR_ORANGE);
-    BSP_LCD_DisplayStringAt(0, 0, (uint8_t *)"487 Mic Audio Test Code", LEFT_MODE);
+    
+    /* The following are static display elements that will remain on the screen. */
+    BSP_LCD_DisplayStringAt(0, 0, (uint8_t *)"487 Demo Code (Mazzeo)", LEFT_MODE);
+    
+    /* Display the L and R colors for the channels */
     BSP_LCD_SetTextColor(LCD_COLOR_BLUE);
     BSP_LCD_DisplayStringAt(0, OSC_Y_POS - 20, (uint8_t *)"L", LEFT_MODE);
     BSP_LCD_SetTextColor(LCD_COLOR_GREEN);
     BSP_LCD_DisplayStringAt(0, OSC_Y_POS, (uint8_t *)"R", LEFT_MODE);
 
-
-    /* Initialize the Audio Interface */
-    BSP_AUDIO_IN_OUT_Init(INPUT_DEVICE_DIGITAL_MICROPHONE_2, OUTPUT_DEVICE_HEADPHONE, DEFAULT_AUDIO_IN_FREQ, DEFAULT_AUDIO_IN_BIT_RESOLUTION, DEFAULT_AUDIO_IN_CHANNEL_NBR);
-
-    /* Initialize SDRAM buffers */
-    BSP_SDRAM_Init();
-    memset((uint16_t *)AUDIO_BUFFER_IN, 0, AUDIO_BLOCK_SIZE * 2);
-    memset((uint16_t *)AUDIO_BUFFER_OUT, 0, AUDIO_BLOCK_SIZE * 2);
+    /* The following code should not be code that you need to worry about - it sets up the audio interfaces. */
+        /* Initialize the Audio Interface */
+        BSP_AUDIO_IN_OUT_Init(INPUT_DEVICE_DIGITAL_MICROPHONE_2, OUTPUT_DEVICE_HEADPHONE, DEFAULT_AUDIO_IN_FREQ, DEFAULT_AUDIO_IN_BIT_RESOLUTION, DEFAULT_AUDIO_IN_CHANNEL_NBR);
+    
+        /* Initialize SDRAM buffers */
+        BSP_SDRAM_Init();
+        memset((uint16_t *)AUDIO_BUFFER_IN, 0, AUDIO_BLOCK_SIZE * 2);
+        memset((uint16_t *)AUDIO_BUFFER_OUT, 0, AUDIO_BLOCK_SIZE * 2);
+    
+        /* Start Recording */
+        if (BSP_AUDIO_IN_Record((uint16_t *)AUDIO_BUFFER_IN, AUDIO_BLOCK_SIZE) != AUDIO_OK) { printf("BSP_AUDIO_IN_Record error\n"); }
+    
+        /* Start Playback */
+        BSP_AUDIO_OUT_SetAudioFrameSlot(CODEC_AUDIOFRAME_SLOT_02);
+        if (BSP_AUDIO_OUT_Play((uint16_t *)AUDIO_BUFFER_OUT, AUDIO_BLOCK_SIZE * 2) != AUDIO_OK) { printf("BSP_AUDIO_OUT_Play error\n"); }
+        
+    /* The audio interfaces are all now working.
+     * Importantly - AUDIO_BUFFER_IN is the pointer to the incoming data from the WM8994
+     *               AUDIO_BUFFER_OUT is the pointer to the outgoing data to the WM8994 */
 
 
-    /* Start Recording */
-    if (BSP_AUDIO_IN_Record((uint16_t *)AUDIO_BUFFER_IN, AUDIO_BLOCK_SIZE) != AUDIO_OK) { printf("BSP_AUDIO_IN_Record error\n"); }
-
-    /* Start Playback */
-    BSP_AUDIO_OUT_SetAudioFrameSlot(CODEC_AUDIOFRAME_SLOT_02);
-    if (BSP_AUDIO_OUT_Play((uint16_t *)AUDIO_BUFFER_OUT, AUDIO_BLOCK_SIZE * 2) != AUDIO_OK) { printf("BSP_AUDIO_OUT_Play error\n"); }
-
-    /* Initialize signal processing filters */
+    /* Initialize signal processing filters - usually there are variables that
+     * need to be set up or that there are arrays you need to precompute - this
+     * function call allows you to do that. */
     initalize_signal_processing();
 
+    /* Hardware timer starts. Set to zero */
     timer.start();
+    
+    /* Main signal processing while loop */
     while (1) {
+    
     /* First Half */
-        /* Wait end of half block recording before going on in the first half cycle*/
+        /* Wait until end of half block recording before going on in the first half cycle*/
         while (audio_rec_buffer_state != BUFFER_OFFSET_HALF) {}
 
         /* This captures the time of an entire cycle */
@@ -121,11 +150,13 @@
         /* Convert data to floating point representation for processing */
         Audio_to_Float((uint16_t *) AUDIO_BUFFER_IN, L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
 
-        /* Here is where signal processing can be done on the floating point arrays */
+            /* ------------------------------------------------------------------------ */
+            /* Here is where signal processing can be done on the floating point arrays */
 
-        process_audio_channel_signals(L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
+            process_audio_channel_signals(L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
         
-        /* Here is where signal processing can end on the floating point arrays */        
+            /* Here is where signal processing can end on the floating point arrays */        
+            /* -------------------------------------------------------------------- */    
                 
         /* Covert floating point data back to fixed point audio format */
         Float_to_Audio(L_channel_float_p, R_channel_float_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);
@@ -154,12 +185,14 @@
         /* Convert data to floating point representation for processing */
         Audio_to_Float((uint16_t *) (AUDIO_BUFFER_IN + (AUDIO_BLOCK_SIZE)), L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
 
-        /* Here is where signal processing can be done on the floating point arrays */
+            /* ------------------------------------------------------------------------ */
+            /* Here is where signal processing can be done on the floating point arrays */
 
-        process_audio_channel_signals(L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
+            process_audio_channel_signals(L_channel_float_p, R_channel_float_p, AUDIO_BLOCK_SAMPLES);
         
-        /* Here is where signal processing can end on the floating point arrays */        
-                
+            /* Here is where signal processing can end on the floating point arrays */        
+            /* -------------------------------------------------------------------- */    
+            
         /* Covert floating point data back to fixed point audio format */
         Float_to_Audio(L_channel_float_p, R_channel_float_p, (uint16_t *) Processed_audio, AUDIO_BLOCK_SAMPLES);