bamlor nuttymaisuay

Dependencies:   mbed

Committer:
jaybehandsome
Date:
Sun Dec 10 10:44:17 2017 +0000
Revision:
2:af822f5a5120
Parent:
0:1e46c1a32764
????;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
jaybehandsome 0:1e46c1a32764 1 #ifndef MPU9250_H
jaybehandsome 0:1e46c1a32764 2 #define MPU9250_H
jaybehandsome 0:1e46c1a32764 3
jaybehandsome 0:1e46c1a32764 4 #include "mbed.h"
jaybehandsome 0:1e46c1a32764 5 #include "math.h"
jaybehandsome 0:1e46c1a32764 6
jaybehandsome 0:1e46c1a32764 7 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
jaybehandsome 0:1e46c1a32764 8 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
jaybehandsome 0:1e46c1a32764 9 //
jaybehandsome 0:1e46c1a32764 10 //Magnetometer Registers
jaybehandsome 0:1e46c1a32764 11 #define AK8963_ADDRESS 0x0C<<1
jaybehandsome 0:1e46c1a32764 12 #define WHO_AM_I_AK8963 0x00 // should return 0x48
jaybehandsome 0:1e46c1a32764 13 #define INFO 0x01
jaybehandsome 0:1e46c1a32764 14 #define AK8963_ST1 0x02 // data ready status bit 0
jaybehandsome 0:1e46c1a32764 15 #define AK8963_XOUT_L 0x03 // data
jaybehandsome 0:1e46c1a32764 16 #define AK8963_XOUT_H 0x04
jaybehandsome 0:1e46c1a32764 17 #define AK8963_YOUT_L 0x05
jaybehandsome 0:1e46c1a32764 18 #define AK8963_YOUT_H 0x06
jaybehandsome 0:1e46c1a32764 19 #define AK8963_ZOUT_L 0x07
jaybehandsome 0:1e46c1a32764 20 #define AK8963_ZOUT_H 0x08
jaybehandsome 0:1e46c1a32764 21 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
jaybehandsome 0:1e46c1a32764 22 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
jaybehandsome 0:1e46c1a32764 23 #define AK8963_ASTC 0x0C // Self test control
jaybehandsome 0:1e46c1a32764 24 #define AK8963_I2CDIS 0x0F // I2C disable
jaybehandsome 0:1e46c1a32764 25 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
jaybehandsome 0:1e46c1a32764 26 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
jaybehandsome 0:1e46c1a32764 27 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
jaybehandsome 0:1e46c1a32764 28
jaybehandsome 0:1e46c1a32764 29 #define SELF_TEST_X_GYRO 0x00
jaybehandsome 0:1e46c1a32764 30 #define SELF_TEST_Y_GYRO 0x01
jaybehandsome 0:1e46c1a32764 31 #define SELF_TEST_Z_GYRO 0x02
jaybehandsome 0:1e46c1a32764 32
jaybehandsome 0:1e46c1a32764 33 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
jaybehandsome 0:1e46c1a32764 34 #define Y_FINE_GAIN 0x04
jaybehandsome 0:1e46c1a32764 35 #define Z_FINE_GAIN 0x05
jaybehandsome 0:1e46c1a32764 36 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
jaybehandsome 0:1e46c1a32764 37 #define XA_OFFSET_L_TC 0x07
jaybehandsome 0:1e46c1a32764 38 #define YA_OFFSET_H 0x08
jaybehandsome 0:1e46c1a32764 39 #define YA_OFFSET_L_TC 0x09
jaybehandsome 0:1e46c1a32764 40 #define ZA_OFFSET_H 0x0A
jaybehandsome 0:1e46c1a32764 41 #define ZA_OFFSET_L_TC 0x0B */
jaybehandsome 0:1e46c1a32764 42
jaybehandsome 0:1e46c1a32764 43 #define SELF_TEST_X_ACCEL 0x0D
jaybehandsome 0:1e46c1a32764 44 #define SELF_TEST_Y_ACCEL 0x0E
jaybehandsome 0:1e46c1a32764 45 #define SELF_TEST_Z_ACCEL 0x0F
jaybehandsome 0:1e46c1a32764 46
jaybehandsome 0:1e46c1a32764 47 #define SELF_TEST_A 0x10
jaybehandsome 0:1e46c1a32764 48
jaybehandsome 0:1e46c1a32764 49 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
jaybehandsome 0:1e46c1a32764 50 #define XG_OFFSET_L 0x14
jaybehandsome 0:1e46c1a32764 51 #define YG_OFFSET_H 0x15
jaybehandsome 0:1e46c1a32764 52 #define YG_OFFSET_L 0x16
jaybehandsome 0:1e46c1a32764 53 #define ZG_OFFSET_H 0x17
jaybehandsome 0:1e46c1a32764 54 #define ZG_OFFSET_L 0x18
jaybehandsome 0:1e46c1a32764 55 #define SMPLRT_DIV 0x19
jaybehandsome 0:1e46c1a32764 56 #define CONFIG 0x1A
jaybehandsome 0:1e46c1a32764 57 #define GYRO_CONFIG 0x1B
jaybehandsome 0:1e46c1a32764 58 #define ACCEL_CONFIG 0x1C
jaybehandsome 0:1e46c1a32764 59 #define ACCEL_CONFIG2 0x1D
jaybehandsome 0:1e46c1a32764 60 #define LP_ACCEL_ODR 0x1E
jaybehandsome 0:1e46c1a32764 61 #define WOM_THR 0x1F
jaybehandsome 0:1e46c1a32764 62
jaybehandsome 0:1e46c1a32764 63 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
jaybehandsome 0:1e46c1a32764 64 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
jaybehandsome 0:1e46c1a32764 65 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
jaybehandsome 0:1e46c1a32764 66
jaybehandsome 0:1e46c1a32764 67 #define FIFO_EN 0x23
jaybehandsome 0:1e46c1a32764 68 #define I2C_MST_CTRL 0x24
jaybehandsome 0:1e46c1a32764 69 #define I2C_SLV0_ADDR 0x25
jaybehandsome 0:1e46c1a32764 70 #define I2C_SLV0_REG 0x26
jaybehandsome 0:1e46c1a32764 71 #define I2C_SLV0_CTRL 0x27
jaybehandsome 0:1e46c1a32764 72 #define I2C_SLV1_ADDR 0x28
jaybehandsome 0:1e46c1a32764 73 #define I2C_SLV1_REG 0x29
jaybehandsome 0:1e46c1a32764 74 #define I2C_SLV1_CTRL 0x2A
jaybehandsome 0:1e46c1a32764 75 #define I2C_SLV2_ADDR 0x2B
jaybehandsome 0:1e46c1a32764 76 #define I2C_SLV2_REG 0x2C
jaybehandsome 0:1e46c1a32764 77 #define I2C_SLV2_CTRL 0x2D
jaybehandsome 0:1e46c1a32764 78 #define I2C_SLV3_ADDR 0x2E
jaybehandsome 0:1e46c1a32764 79 #define I2C_SLV3_REG 0x2F
jaybehandsome 0:1e46c1a32764 80 #define I2C_SLV3_CTRL 0x30
jaybehandsome 0:1e46c1a32764 81 #define I2C_SLV4_ADDR 0x31
jaybehandsome 0:1e46c1a32764 82 #define I2C_SLV4_REG 0x32
jaybehandsome 0:1e46c1a32764 83 #define I2C_SLV4_DO 0x33
jaybehandsome 0:1e46c1a32764 84 #define I2C_SLV4_CTRL 0x34
jaybehandsome 0:1e46c1a32764 85 #define I2C_SLV4_DI 0x35
jaybehandsome 0:1e46c1a32764 86 #define I2C_MST_STATUS 0x36
jaybehandsome 0:1e46c1a32764 87 #define INT_PIN_CFG 0x37
jaybehandsome 0:1e46c1a32764 88 #define INT_ENABLE 0x38
jaybehandsome 0:1e46c1a32764 89 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
jaybehandsome 0:1e46c1a32764 90 #define INT_STATUS 0x3A
jaybehandsome 0:1e46c1a32764 91 #define ACCEL_XOUT_H 0x3B
jaybehandsome 0:1e46c1a32764 92 #define ACCEL_XOUT_L 0x3C
jaybehandsome 0:1e46c1a32764 93 #define ACCEL_YOUT_H 0x3D
jaybehandsome 0:1e46c1a32764 94 #define ACCEL_YOUT_L 0x3E
jaybehandsome 0:1e46c1a32764 95 #define ACCEL_ZOUT_H 0x3F
jaybehandsome 0:1e46c1a32764 96 #define ACCEL_ZOUT_L 0x40
jaybehandsome 0:1e46c1a32764 97 #define TEMP_OUT_H 0x41
jaybehandsome 0:1e46c1a32764 98 #define TEMP_OUT_L 0x42
jaybehandsome 0:1e46c1a32764 99 #define GYRO_XOUT_H 0x43
jaybehandsome 0:1e46c1a32764 100 #define GYRO_XOUT_L 0x44
jaybehandsome 0:1e46c1a32764 101 #define GYRO_YOUT_H 0x45
jaybehandsome 0:1e46c1a32764 102 #define GYRO_YOUT_L 0x46
jaybehandsome 0:1e46c1a32764 103 #define GYRO_ZOUT_H 0x47
jaybehandsome 0:1e46c1a32764 104 #define GYRO_ZOUT_L 0x48
jaybehandsome 0:1e46c1a32764 105 #define EXT_SENS_DATA_00 0x49
jaybehandsome 0:1e46c1a32764 106 #define EXT_SENS_DATA_01 0x4A
jaybehandsome 0:1e46c1a32764 107 #define EXT_SENS_DATA_02 0x4B
jaybehandsome 0:1e46c1a32764 108 #define EXT_SENS_DATA_03 0x4C
jaybehandsome 0:1e46c1a32764 109 #define EXT_SENS_DATA_04 0x4D
jaybehandsome 0:1e46c1a32764 110 #define EXT_SENS_DATA_05 0x4E
jaybehandsome 0:1e46c1a32764 111 #define EXT_SENS_DATA_06 0x4F
jaybehandsome 0:1e46c1a32764 112 #define EXT_SENS_DATA_07 0x50
jaybehandsome 0:1e46c1a32764 113 #define EXT_SENS_DATA_08 0x51
jaybehandsome 0:1e46c1a32764 114 #define EXT_SENS_DATA_09 0x52
jaybehandsome 0:1e46c1a32764 115 #define EXT_SENS_DATA_10 0x53
jaybehandsome 0:1e46c1a32764 116 #define EXT_SENS_DATA_11 0x54
jaybehandsome 0:1e46c1a32764 117 #define EXT_SENS_DATA_12 0x55
jaybehandsome 0:1e46c1a32764 118 #define EXT_SENS_DATA_13 0x56
jaybehandsome 0:1e46c1a32764 119 #define EXT_SENS_DATA_14 0x57
jaybehandsome 0:1e46c1a32764 120 #define EXT_SENS_DATA_15 0x58
jaybehandsome 0:1e46c1a32764 121 #define EXT_SENS_DATA_16 0x59
jaybehandsome 0:1e46c1a32764 122 #define EXT_SENS_DATA_17 0x5A
jaybehandsome 0:1e46c1a32764 123 #define EXT_SENS_DATA_18 0x5B
jaybehandsome 0:1e46c1a32764 124 #define EXT_SENS_DATA_19 0x5C
jaybehandsome 0:1e46c1a32764 125 #define EXT_SENS_DATA_20 0x5D
jaybehandsome 0:1e46c1a32764 126 #define EXT_SENS_DATA_21 0x5E
jaybehandsome 0:1e46c1a32764 127 #define EXT_SENS_DATA_22 0x5F
jaybehandsome 0:1e46c1a32764 128 #define EXT_SENS_DATA_23 0x60
jaybehandsome 0:1e46c1a32764 129 #define MOT_DETECT_STATUS 0x61
jaybehandsome 0:1e46c1a32764 130 #define I2C_SLV0_DO 0x63
jaybehandsome 0:1e46c1a32764 131 #define I2C_SLV1_DO 0x64
jaybehandsome 0:1e46c1a32764 132 #define I2C_SLV2_DO 0x65
jaybehandsome 0:1e46c1a32764 133 #define I2C_SLV3_DO 0x66
jaybehandsome 0:1e46c1a32764 134 #define I2C_MST_wait_ms_CTRL 0x67
jaybehandsome 0:1e46c1a32764 135 #define SIGNAL_PATH_RESET 0x68
jaybehandsome 0:1e46c1a32764 136 #define MOT_DETECT_CTRL 0x69
jaybehandsome 0:1e46c1a32764 137 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
jaybehandsome 0:1e46c1a32764 138 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
jaybehandsome 0:1e46c1a32764 139 #define PWR_MGMT_2 0x6C
jaybehandsome 0:1e46c1a32764 140 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
jaybehandsome 0:1e46c1a32764 141 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
jaybehandsome 0:1e46c1a32764 142 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
jaybehandsome 0:1e46c1a32764 143 #define DMP_REG_1 0x70
jaybehandsome 0:1e46c1a32764 144 #define DMP_REG_2 0x71
jaybehandsome 0:1e46c1a32764 145 #define FIFO_COUNTH 0x72
jaybehandsome 0:1e46c1a32764 146 #define FIFO_COUNTL 0x73
jaybehandsome 0:1e46c1a32764 147 #define FIFO_R_W 0x74
jaybehandsome 0:1e46c1a32764 148 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
jaybehandsome 0:1e46c1a32764 149 #define XA_OFFSET_H 0x77
jaybehandsome 0:1e46c1a32764 150 #define XA_OFFSET_L 0x78
jaybehandsome 0:1e46c1a32764 151 #define YA_OFFSET_H 0x7A
jaybehandsome 0:1e46c1a32764 152 #define YA_OFFSET_L 0x7B
jaybehandsome 0:1e46c1a32764 153 #define ZA_OFFSET_H 0x7D
jaybehandsome 0:1e46c1a32764 154 #define ZA_OFFSET_L 0x7E
jaybehandsome 0:1e46c1a32764 155
jaybehandsome 0:1e46c1a32764 156 // Using the MSENSR-9250 breakout board, ADO is set to 0
jaybehandsome 0:1e46c1a32764 157 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
jaybehandsome 0:1e46c1a32764 158 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
jaybehandsome 0:1e46c1a32764 159 #define ADO 0
jaybehandsome 0:1e46c1a32764 160 #if ADO
jaybehandsome 0:1e46c1a32764 161 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
jaybehandsome 0:1e46c1a32764 162 #else
jaybehandsome 0:1e46c1a32764 163 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
jaybehandsome 0:1e46c1a32764 164 #endif
jaybehandsome 0:1e46c1a32764 165
jaybehandsome 0:1e46c1a32764 166 // Set initial input parameters
jaybehandsome 0:1e46c1a32764 167 enum Ascale {
jaybehandsome 0:1e46c1a32764 168 AFS_2G = 0,
jaybehandsome 0:1e46c1a32764 169 AFS_4G,
jaybehandsome 0:1e46c1a32764 170 AFS_8G,
jaybehandsome 0:1e46c1a32764 171 AFS_16G
jaybehandsome 0:1e46c1a32764 172 };
jaybehandsome 0:1e46c1a32764 173
jaybehandsome 0:1e46c1a32764 174 enum Gscale {
jaybehandsome 0:1e46c1a32764 175 GFS_250DPS = 0,
jaybehandsome 0:1e46c1a32764 176 GFS_500DPS,
jaybehandsome 0:1e46c1a32764 177 GFS_1000DPS,
jaybehandsome 0:1e46c1a32764 178 GFS_2000DPS
jaybehandsome 0:1e46c1a32764 179 };
jaybehandsome 0:1e46c1a32764 180
jaybehandsome 0:1e46c1a32764 181 enum Mscale {
jaybehandsome 0:1e46c1a32764 182 MFS_14BITS = 0, // 0.6 mG per LSB
jaybehandsome 0:1e46c1a32764 183 MFS_16BITS // 0.15 mG per LSB
jaybehandsome 0:1e46c1a32764 184 };
jaybehandsome 0:1e46c1a32764 185
jaybehandsome 0:1e46c1a32764 186 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
jaybehandsome 0:1e46c1a32764 187 uint8_t Gscale = GFS_2000DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
jaybehandsome 0:1e46c1a32764 188 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
jaybehandsome 0:1e46c1a32764 189 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
jaybehandsome 0:1e46c1a32764 190 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
jaybehandsome 0:1e46c1a32764 191
jaybehandsome 0:1e46c1a32764 192 //Set up I2C, (SDA,SCL)
jaybehandsome 0:1e46c1a32764 193 I2C i2c(I2C_SDA, I2C_SCL);
jaybehandsome 0:1e46c1a32764 194
jaybehandsome 0:1e46c1a32764 195 DigitalOut myled(LED1);
jaybehandsome 0:1e46c1a32764 196
jaybehandsome 0:1e46c1a32764 197 // Pin definitions
jaybehandsome 0:1e46c1a32764 198 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
jaybehandsome 0:1e46c1a32764 199
jaybehandsome 0:1e46c1a32764 200 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
jaybehandsome 0:1e46c1a32764 201 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
jaybehandsome 0:1e46c1a32764 202 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
jaybehandsome 0:1e46c1a32764 203 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
jaybehandsome 0:1e46c1a32764 204 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
jaybehandsome 0:1e46c1a32764 205 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
jaybehandsome 0:1e46c1a32764 206 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
jaybehandsome 0:1e46c1a32764 207 float temperature;
jaybehandsome 0:1e46c1a32764 208 float SelfTest[6];
jaybehandsome 0:1e46c1a32764 209
jaybehandsome 2:af822f5a5120 210 float delt_t = 0; // used to control display output rate
jaybehandsome 0:1e46c1a32764 211 int count = 0; // used to control display output rate
jaybehandsome 0:1e46c1a32764 212
jaybehandsome 0:1e46c1a32764 213 // parameters for 6 DoF sensor fusion calculations
jaybehandsome 0:1e46c1a32764 214 float PI = 3.14159265358979323846f;
jaybehandsome 0:1e46c1a32764 215 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
jaybehandsome 0:1e46c1a32764 216 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
jaybehandsome 0:1e46c1a32764 217 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
jaybehandsome 0:1e46c1a32764 218 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
jaybehandsome 0:1e46c1a32764 219 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
jaybehandsome 0:1e46c1a32764 220 #define Ki 0.0f
jaybehandsome 0:1e46c1a32764 221
jaybehandsome 0:1e46c1a32764 222 float pitch, yaw, roll;
jaybehandsome 0:1e46c1a32764 223 float deltat = 0.0f; // integration interval for both filter schemes
jaybehandsome 0:1e46c1a32764 224 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
jaybehandsome 0:1e46c1a32764 225 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
jaybehandsome 0:1e46c1a32764 226 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
jaybehandsome 0:1e46c1a32764 227
jaybehandsome 0:1e46c1a32764 228 class MPU9250 {
jaybehandsome 0:1e46c1a32764 229
jaybehandsome 0:1e46c1a32764 230 protected:
jaybehandsome 0:1e46c1a32764 231
jaybehandsome 0:1e46c1a32764 232 public:
jaybehandsome 0:1e46c1a32764 233 //===================================================================================================================
jaybehandsome 0:1e46c1a32764 234 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
jaybehandsome 0:1e46c1a32764 235 //===================================================================================================================
jaybehandsome 0:1e46c1a32764 236
jaybehandsome 0:1e46c1a32764 237 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
jaybehandsome 0:1e46c1a32764 238 {
jaybehandsome 0:1e46c1a32764 239 char data_write[2];
jaybehandsome 0:1e46c1a32764 240 data_write[0] = subAddress;
jaybehandsome 0:1e46c1a32764 241 data_write[1] = data;
jaybehandsome 0:1e46c1a32764 242 i2c.write(address, data_write, 2, 0);
jaybehandsome 0:1e46c1a32764 243 }
jaybehandsome 0:1e46c1a32764 244
jaybehandsome 0:1e46c1a32764 245 char readByte(uint8_t address, uint8_t subAddress)
jaybehandsome 0:1e46c1a32764 246 {
jaybehandsome 0:1e46c1a32764 247 char data[1]; // `data` will store the register data
jaybehandsome 0:1e46c1a32764 248 char data_write[1];
jaybehandsome 0:1e46c1a32764 249 data_write[0] = subAddress;
jaybehandsome 0:1e46c1a32764 250 i2c.write(address, data_write, 1, 1); // no stop
jaybehandsome 0:1e46c1a32764 251 i2c.read(address, data, 1, 0);
jaybehandsome 0:1e46c1a32764 252 return data[0];
jaybehandsome 0:1e46c1a32764 253 }
jaybehandsome 0:1e46c1a32764 254
jaybehandsome 0:1e46c1a32764 255 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
jaybehandsome 0:1e46c1a32764 256 {
jaybehandsome 0:1e46c1a32764 257 char data[14];
jaybehandsome 0:1e46c1a32764 258 char data_write[1];
jaybehandsome 0:1e46c1a32764 259 data_write[0] = subAddress;
jaybehandsome 0:1e46c1a32764 260 i2c.write(address, data_write, 1, 1); // no stop
jaybehandsome 0:1e46c1a32764 261 i2c.read(address, data, count, 0);
jaybehandsome 0:1e46c1a32764 262 for(int ii = 0; ii < count; ii++) {
jaybehandsome 0:1e46c1a32764 263 dest[ii] = data[ii];
jaybehandsome 0:1e46c1a32764 264 }
jaybehandsome 0:1e46c1a32764 265 }
jaybehandsome 0:1e46c1a32764 266
jaybehandsome 0:1e46c1a32764 267
jaybehandsome 0:1e46c1a32764 268 void getMres() {
jaybehandsome 0:1e46c1a32764 269 switch (Mscale)
jaybehandsome 0:1e46c1a32764 270 {
jaybehandsome 0:1e46c1a32764 271 // Possible magnetometer scales (and their register bit settings) are:
jaybehandsome 0:1e46c1a32764 272 // 14 bit resolution (0) and 16 bit resolution (1)
jaybehandsome 0:1e46c1a32764 273 case MFS_14BITS:
jaybehandsome 0:1e46c1a32764 274 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
jaybehandsome 0:1e46c1a32764 275 break;
jaybehandsome 0:1e46c1a32764 276 case MFS_16BITS:
jaybehandsome 0:1e46c1a32764 277 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
jaybehandsome 0:1e46c1a32764 278 break;
jaybehandsome 0:1e46c1a32764 279 }
jaybehandsome 0:1e46c1a32764 280 }
jaybehandsome 0:1e46c1a32764 281
jaybehandsome 0:1e46c1a32764 282
jaybehandsome 0:1e46c1a32764 283 void getGres() {
jaybehandsome 0:1e46c1a32764 284 switch (Gscale)
jaybehandsome 0:1e46c1a32764 285 {
jaybehandsome 0:1e46c1a32764 286 // Possible gyro scales (and their register bit settings) are:
jaybehandsome 0:1e46c1a32764 287 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
jaybehandsome 0:1e46c1a32764 288 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
jaybehandsome 0:1e46c1a32764 289 case GFS_250DPS:
jaybehandsome 0:1e46c1a32764 290 gRes = 250.0/32768.0;
jaybehandsome 0:1e46c1a32764 291 break;
jaybehandsome 0:1e46c1a32764 292 case GFS_500DPS:
jaybehandsome 0:1e46c1a32764 293 gRes = 500.0/32768.0;
jaybehandsome 0:1e46c1a32764 294 break;
jaybehandsome 0:1e46c1a32764 295 case GFS_1000DPS:
jaybehandsome 0:1e46c1a32764 296 gRes = 1000.0/32768.0;
jaybehandsome 0:1e46c1a32764 297 break;
jaybehandsome 0:1e46c1a32764 298 case GFS_2000DPS:
jaybehandsome 0:1e46c1a32764 299 gRes = 2000.0/32768.0;
jaybehandsome 0:1e46c1a32764 300 break;
jaybehandsome 0:1e46c1a32764 301 }
jaybehandsome 0:1e46c1a32764 302 }
jaybehandsome 0:1e46c1a32764 303
jaybehandsome 0:1e46c1a32764 304
jaybehandsome 0:1e46c1a32764 305 void getAres() {
jaybehandsome 0:1e46c1a32764 306 switch (Ascale)
jaybehandsome 0:1e46c1a32764 307 {
jaybehandsome 0:1e46c1a32764 308 // Possible accelerometer scales (and their register bit settings) are:
jaybehandsome 0:1e46c1a32764 309 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
jaybehandsome 0:1e46c1a32764 310 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
jaybehandsome 0:1e46c1a32764 311 case AFS_2G:
jaybehandsome 0:1e46c1a32764 312 aRes = 2.0/32768.0;
jaybehandsome 0:1e46c1a32764 313 break;
jaybehandsome 0:1e46c1a32764 314 case AFS_4G:
jaybehandsome 0:1e46c1a32764 315 aRes = 4.0/32768.0;
jaybehandsome 0:1e46c1a32764 316 break;
jaybehandsome 0:1e46c1a32764 317 case AFS_8G:
jaybehandsome 0:1e46c1a32764 318 aRes = 8.0/32768.0;
jaybehandsome 0:1e46c1a32764 319 break;
jaybehandsome 0:1e46c1a32764 320 case AFS_16G:
jaybehandsome 0:1e46c1a32764 321 aRes = 16.0/32768.0;
jaybehandsome 0:1e46c1a32764 322 break;
jaybehandsome 0:1e46c1a32764 323 }
jaybehandsome 0:1e46c1a32764 324 }
jaybehandsome 0:1e46c1a32764 325
jaybehandsome 0:1e46c1a32764 326
jaybehandsome 0:1e46c1a32764 327 void readAccelData(int16_t * destination)
jaybehandsome 0:1e46c1a32764 328 {
jaybehandsome 0:1e46c1a32764 329 uint8_t rawData[6]; // x/y/z accel register data stored here
jaybehandsome 0:1e46c1a32764 330 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
jaybehandsome 0:1e46c1a32764 331 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 332 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 333 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 334 }
jaybehandsome 0:1e46c1a32764 335
jaybehandsome 0:1e46c1a32764 336 void readGyroData(int16_t * destination)
jaybehandsome 0:1e46c1a32764 337 {
jaybehandsome 0:1e46c1a32764 338 uint8_t rawData[6]; // x/y/z gyro register data stored here
jaybehandsome 0:1e46c1a32764 339 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
jaybehandsome 0:1e46c1a32764 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 343 }
jaybehandsome 0:1e46c1a32764 344
jaybehandsome 0:1e46c1a32764 345 void readMagData(int16_t * destination)
jaybehandsome 0:1e46c1a32764 346 {
jaybehandsome 0:1e46c1a32764 347 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
jaybehandsome 0:1e46c1a32764 348 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
jaybehandsome 0:1e46c1a32764 349 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
jaybehandsome 0:1e46c1a32764 350 uint8_t c = rawData[6]; // End data read by reading ST2 register
jaybehandsome 0:1e46c1a32764 351 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
jaybehandsome 0:1e46c1a32764 352 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 353 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
jaybehandsome 0:1e46c1a32764 354 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
jaybehandsome 0:1e46c1a32764 355 }
jaybehandsome 0:1e46c1a32764 356 }
jaybehandsome 0:1e46c1a32764 357 }
jaybehandsome 0:1e46c1a32764 358
jaybehandsome 0:1e46c1a32764 359 int16_t readTempData()
jaybehandsome 0:1e46c1a32764 360 {
jaybehandsome 0:1e46c1a32764 361 uint8_t rawData[2]; // x/y/z gyro register data stored here
jaybehandsome 0:1e46c1a32764 362 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
jaybehandsome 0:1e46c1a32764 363 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
jaybehandsome 0:1e46c1a32764 364 }
jaybehandsome 0:1e46c1a32764 365
jaybehandsome 0:1e46c1a32764 366
jaybehandsome 0:1e46c1a32764 367 void resetMPU9250() {
jaybehandsome 0:1e46c1a32764 368 // reset device
jaybehandsome 0:1e46c1a32764 369 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
jaybehandsome 0:1e46c1a32764 370 wait(0.1);
jaybehandsome 0:1e46c1a32764 371 }
jaybehandsome 0:1e46c1a32764 372
jaybehandsome 0:1e46c1a32764 373 void initAK8963(float * destination)
jaybehandsome 0:1e46c1a32764 374 {
jaybehandsome 0:1e46c1a32764 375 // First extract the factory calibration for each magnetometer axis
jaybehandsome 0:1e46c1a32764 376 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
jaybehandsome 0:1e46c1a32764 377 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
jaybehandsome 0:1e46c1a32764 378 wait(0.01);
jaybehandsome 0:1e46c1a32764 379 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
jaybehandsome 0:1e46c1a32764 380 wait(0.01);
jaybehandsome 0:1e46c1a32764 381 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
jaybehandsome 0:1e46c1a32764 382 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
jaybehandsome 0:1e46c1a32764 383 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
jaybehandsome 0:1e46c1a32764 384 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
jaybehandsome 0:1e46c1a32764 385 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
jaybehandsome 0:1e46c1a32764 386 wait(0.01);
jaybehandsome 0:1e46c1a32764 387 // Configure the magnetometer for continuous read and highest resolution
jaybehandsome 0:1e46c1a32764 388 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
jaybehandsome 0:1e46c1a32764 389 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
jaybehandsome 0:1e46c1a32764 390 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
jaybehandsome 0:1e46c1a32764 391 wait(0.01);
jaybehandsome 0:1e46c1a32764 392 }
jaybehandsome 0:1e46c1a32764 393
jaybehandsome 0:1e46c1a32764 394
jaybehandsome 0:1e46c1a32764 395 void initMPU9250()
jaybehandsome 0:1e46c1a32764 396 {
jaybehandsome 0:1e46c1a32764 397 // Initialize MPU9250 device
jaybehandsome 0:1e46c1a32764 398 // wake up device
jaybehandsome 0:1e46c1a32764 399 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
jaybehandsome 0:1e46c1a32764 400 wait(0.1); // wait_ms 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
jaybehandsome 0:1e46c1a32764 401
jaybehandsome 0:1e46c1a32764 402 // get stable time source
jaybehandsome 0:1e46c1a32764 403 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
jaybehandsome 0:1e46c1a32764 404
jaybehandsome 0:1e46c1a32764 405 // Configure Gyro and Accelerometer
jaybehandsome 0:1e46c1a32764 406 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
jaybehandsome 0:1e46c1a32764 407 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
jaybehandsome 0:1e46c1a32764 408 // Maximum wait_ms is 4.9 ms which is just over a 200 Hz maximum rate
jaybehandsome 0:1e46c1a32764 409 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
jaybehandsome 0:1e46c1a32764 410
jaybehandsome 0:1e46c1a32764 411 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
jaybehandsome 0:1e46c1a32764 412 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
jaybehandsome 0:1e46c1a32764 413
jaybehandsome 0:1e46c1a32764 414 // Set gyroscope full scale range
jaybehandsome 0:1e46c1a32764 415 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
jaybehandsome 0:1e46c1a32764 416 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
jaybehandsome 0:1e46c1a32764 417 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
jaybehandsome 0:1e46c1a32764 418 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
jaybehandsome 0:1e46c1a32764 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
jaybehandsome 0:1e46c1a32764 420
jaybehandsome 0:1e46c1a32764 421 // Set accelerometer configuration
jaybehandsome 0:1e46c1a32764 422 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
jaybehandsome 0:1e46c1a32764 423 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
jaybehandsome 0:1e46c1a32764 424 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
jaybehandsome 0:1e46c1a32764 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
jaybehandsome 0:1e46c1a32764 426
jaybehandsome 0:1e46c1a32764 427 // Set accelerometer sample rate configuration
jaybehandsome 0:1e46c1a32764 428 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
jaybehandsome 0:1e46c1a32764 429 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
jaybehandsome 0:1e46c1a32764 430 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
jaybehandsome 0:1e46c1a32764 431 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
jaybehandsome 0:1e46c1a32764 432 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
jaybehandsome 0:1e46c1a32764 433
jaybehandsome 0:1e46c1a32764 434 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
jaybehandsome 0:1e46c1a32764 435 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
jaybehandsome 0:1e46c1a32764 436
jaybehandsome 0:1e46c1a32764 437 // Configure Interrupts and Bypass Enable
jaybehandsome 0:1e46c1a32764 438 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
jaybehandsome 0:1e46c1a32764 439 // can join the I2C bus and all can be controlled by the Arduino as master
jaybehandsome 0:1e46c1a32764 440 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
jaybehandsome 0:1e46c1a32764 441 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
jaybehandsome 0:1e46c1a32764 442 }
jaybehandsome 0:1e46c1a32764 443
jaybehandsome 0:1e46c1a32764 444 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
jaybehandsome 0:1e46c1a32764 445 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
jaybehandsome 0:1e46c1a32764 446 void calibrateMPU9250(float * dest1, float * dest2)
jaybehandsome 0:1e46c1a32764 447 {
jaybehandsome 0:1e46c1a32764 448 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
jaybehandsome 0:1e46c1a32764 449 uint16_t ii, packet_count, fifo_count;
jaybehandsome 0:1e46c1a32764 450 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
jaybehandsome 0:1e46c1a32764 451
jaybehandsome 0:1e46c1a32764 452 // reset device, reset all registers, clear gyro and accelerometer bias registers
jaybehandsome 0:1e46c1a32764 453 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
jaybehandsome 0:1e46c1a32764 454 wait(0.1);
jaybehandsome 0:1e46c1a32764 455
jaybehandsome 0:1e46c1a32764 456 // get stable time source
jaybehandsome 0:1e46c1a32764 457 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
jaybehandsome 0:1e46c1a32764 458 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
jaybehandsome 0:1e46c1a32764 459 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
jaybehandsome 0:1e46c1a32764 460 wait(0.2);
jaybehandsome 0:1e46c1a32764 461
jaybehandsome 0:1e46c1a32764 462 // Configure device for bias calculation
jaybehandsome 0:1e46c1a32764 463 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
jaybehandsome 0:1e46c1a32764 464 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
jaybehandsome 0:1e46c1a32764 465 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
jaybehandsome 0:1e46c1a32764 466 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
jaybehandsome 0:1e46c1a32764 467 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
jaybehandsome 0:1e46c1a32764 468 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
jaybehandsome 0:1e46c1a32764 469 wait(0.015);
jaybehandsome 0:1e46c1a32764 470
jaybehandsome 0:1e46c1a32764 471 // Configure MPU9250 gyro and accelerometer for bias calculation
jaybehandsome 0:1e46c1a32764 472 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
jaybehandsome 0:1e46c1a32764 473 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
jaybehandsome 0:1e46c1a32764 474 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
jaybehandsome 0:1e46c1a32764 475 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
jaybehandsome 0:1e46c1a32764 476
jaybehandsome 0:1e46c1a32764 477 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
jaybehandsome 0:1e46c1a32764 478 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
jaybehandsome 0:1e46c1a32764 479
jaybehandsome 0:1e46c1a32764 480 // Configure FIFO to capture accelerometer and gyro data for bias calculation
jaybehandsome 0:1e46c1a32764 481 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
jaybehandsome 0:1e46c1a32764 482 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
jaybehandsome 0:1e46c1a32764 483 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
jaybehandsome 0:1e46c1a32764 484
jaybehandsome 0:1e46c1a32764 485 // At end of sample accumulation, turn off FIFO sensor read
jaybehandsome 0:1e46c1a32764 486 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
jaybehandsome 0:1e46c1a32764 487 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
jaybehandsome 0:1e46c1a32764 488 fifo_count = ((uint16_t)data[0] << 8) | data[1];
jaybehandsome 0:1e46c1a32764 489 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
jaybehandsome 0:1e46c1a32764 490
jaybehandsome 0:1e46c1a32764 491 for (ii = 0; ii < packet_count; ii++) {
jaybehandsome 0:1e46c1a32764 492 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
jaybehandsome 0:1e46c1a32764 493 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
jaybehandsome 0:1e46c1a32764 494 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
jaybehandsome 0:1e46c1a32764 495 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
jaybehandsome 0:1e46c1a32764 496 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
jaybehandsome 0:1e46c1a32764 497 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
jaybehandsome 0:1e46c1a32764 498 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
jaybehandsome 0:1e46c1a32764 499 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
jaybehandsome 0:1e46c1a32764 500
jaybehandsome 0:1e46c1a32764 501 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
jaybehandsome 0:1e46c1a32764 502 accel_bias[1] += (int32_t) accel_temp[1];
jaybehandsome 0:1e46c1a32764 503 accel_bias[2] += (int32_t) accel_temp[2];
jaybehandsome 0:1e46c1a32764 504 gyro_bias[0] += (int32_t) gyro_temp[0];
jaybehandsome 0:1e46c1a32764 505 gyro_bias[1] += (int32_t) gyro_temp[1];
jaybehandsome 0:1e46c1a32764 506 gyro_bias[2] += (int32_t) gyro_temp[2];
jaybehandsome 0:1e46c1a32764 507
jaybehandsome 0:1e46c1a32764 508 }
jaybehandsome 0:1e46c1a32764 509 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
jaybehandsome 0:1e46c1a32764 510 accel_bias[1] /= (int32_t) packet_count;
jaybehandsome 0:1e46c1a32764 511 accel_bias[2] /= (int32_t) packet_count;
jaybehandsome 0:1e46c1a32764 512 gyro_bias[0] /= (int32_t) packet_count;
jaybehandsome 0:1e46c1a32764 513 gyro_bias[1] /= (int32_t) packet_count;
jaybehandsome 0:1e46c1a32764 514 gyro_bias[2] /= (int32_t) packet_count;
jaybehandsome 0:1e46c1a32764 515
jaybehandsome 0:1e46c1a32764 516 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
jaybehandsome 0:1e46c1a32764 517 else {accel_bias[2] += (int32_t) accelsensitivity;}
jaybehandsome 0:1e46c1a32764 518
jaybehandsome 0:1e46c1a32764 519 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
jaybehandsome 0:1e46c1a32764 520 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
jaybehandsome 0:1e46c1a32764 521 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
jaybehandsome 0:1e46c1a32764 522 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
jaybehandsome 0:1e46c1a32764 523 data[3] = (-gyro_bias[1]/4) & 0xFF;
jaybehandsome 0:1e46c1a32764 524 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
jaybehandsome 0:1e46c1a32764 525 data[5] = (-gyro_bias[2]/4) & 0xFF;
jaybehandsome 0:1e46c1a32764 526
jaybehandsome 0:1e46c1a32764 527 /// Push gyro biases to hardware registers
jaybehandsome 0:1e46c1a32764 528 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
jaybehandsome 0:1e46c1a32764 529 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
jaybehandsome 0:1e46c1a32764 530 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
jaybehandsome 0:1e46c1a32764 531 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
jaybehandsome 0:1e46c1a32764 532 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
jaybehandsome 0:1e46c1a32764 533 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
jaybehandsome 0:1e46c1a32764 534 */
jaybehandsome 0:1e46c1a32764 535 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
jaybehandsome 0:1e46c1a32764 536 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
jaybehandsome 0:1e46c1a32764 537 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
jaybehandsome 0:1e46c1a32764 538
jaybehandsome 0:1e46c1a32764 539 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
jaybehandsome 0:1e46c1a32764 540 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
jaybehandsome 0:1e46c1a32764 541 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
jaybehandsome 0:1e46c1a32764 542 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
jaybehandsome 0:1e46c1a32764 543 // the accelerometer biases calculated above must be divided by 8.
jaybehandsome 0:1e46c1a32764 544
jaybehandsome 0:1e46c1a32764 545 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
jaybehandsome 0:1e46c1a32764 546 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
jaybehandsome 0:1e46c1a32764 547 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
jaybehandsome 0:1e46c1a32764 548 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
jaybehandsome 0:1e46c1a32764 549 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
jaybehandsome 0:1e46c1a32764 550 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
jaybehandsome 0:1e46c1a32764 551 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
jaybehandsome 0:1e46c1a32764 552
jaybehandsome 0:1e46c1a32764 553 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
jaybehandsome 0:1e46c1a32764 554 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
jaybehandsome 0:1e46c1a32764 555
jaybehandsome 0:1e46c1a32764 556 for(ii = 0; ii < 3; ii++) {
jaybehandsome 0:1e46c1a32764 557 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
jaybehandsome 0:1e46c1a32764 558 }
jaybehandsome 0:1e46c1a32764 559
jaybehandsome 0:1e46c1a32764 560 // Construct total accelerometer bias, including calculated average accelerometer bias from above
jaybehandsome 0:1e46c1a32764 561 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
jaybehandsome 0:1e46c1a32764 562 accel_bias_reg[1] -= (accel_bias[1]/8);
jaybehandsome 0:1e46c1a32764 563 accel_bias_reg[2] -= (accel_bias[2]/8);
jaybehandsome 0:1e46c1a32764 564
jaybehandsome 0:1e46c1a32764 565 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
jaybehandsome 0:1e46c1a32764 566 data[1] = (accel_bias_reg[0]) & 0xFF;
jaybehandsome 0:1e46c1a32764 567 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
jaybehandsome 0:1e46c1a32764 568 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
jaybehandsome 0:1e46c1a32764 569 data[3] = (accel_bias_reg[1]) & 0xFF;
jaybehandsome 0:1e46c1a32764 570 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
jaybehandsome 0:1e46c1a32764 571 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
jaybehandsome 0:1e46c1a32764 572 data[5] = (accel_bias_reg[2]) & 0xFF;
jaybehandsome 0:1e46c1a32764 573 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
jaybehandsome 0:1e46c1a32764 574
jaybehandsome 0:1e46c1a32764 575 // Apparently this is not working for the acceleration biases in the MPU-9250
jaybehandsome 0:1e46c1a32764 576 // Are we handling the temperature correction bit properly?
jaybehandsome 0:1e46c1a32764 577 // Push accelerometer biases to hardware registers
jaybehandsome 0:1e46c1a32764 578 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
jaybehandsome 0:1e46c1a32764 579 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
jaybehandsome 0:1e46c1a32764 580 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
jaybehandsome 0:1e46c1a32764 581 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
jaybehandsome 0:1e46c1a32764 582 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
jaybehandsome 0:1e46c1a32764 583 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
jaybehandsome 0:1e46c1a32764 584 */
jaybehandsome 0:1e46c1a32764 585 // Output scaled accelerometer biases for manual subtraction in the main program
jaybehandsome 0:1e46c1a32764 586 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
jaybehandsome 0:1e46c1a32764 587 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
jaybehandsome 0:1e46c1a32764 588 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
jaybehandsome 0:1e46c1a32764 589 }
jaybehandsome 0:1e46c1a32764 590
jaybehandsome 0:1e46c1a32764 591
jaybehandsome 0:1e46c1a32764 592 // Accelerometer and gyroscope self test; check calibration wrt factory settings
jaybehandsome 0:1e46c1a32764 593 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
jaybehandsome 0:1e46c1a32764 594 {
jaybehandsome 0:1e46c1a32764 595 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
jaybehandsome 0:1e46c1a32764 596 uint8_t selfTest[6];
jaybehandsome 0:1e46c1a32764 597 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
jaybehandsome 0:1e46c1a32764 598 float factoryTrim[6];
jaybehandsome 0:1e46c1a32764 599 uint8_t FS = 0;
jaybehandsome 0:1e46c1a32764 600
jaybehandsome 0:1e46c1a32764 601 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
jaybehandsome 0:1e46c1a32764 602 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
jaybehandsome 0:1e46c1a32764 603 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
jaybehandsome 0:1e46c1a32764 604 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
jaybehandsome 0:1e46c1a32764 605 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
jaybehandsome 0:1e46c1a32764 606
jaybehandsome 0:1e46c1a32764 607 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
jaybehandsome 0:1e46c1a32764 608
jaybehandsome 0:1e46c1a32764 609 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
jaybehandsome 0:1e46c1a32764 610 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 611 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 612 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 613
jaybehandsome 0:1e46c1a32764 614 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
jaybehandsome 0:1e46c1a32764 615 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 616 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 617 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 618 }
jaybehandsome 0:1e46c1a32764 619
jaybehandsome 0:1e46c1a32764 620 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
jaybehandsome 0:1e46c1a32764 621 aAvg[ii] /= 200;
jaybehandsome 0:1e46c1a32764 622 gAvg[ii] /= 200;
jaybehandsome 0:1e46c1a32764 623 }
jaybehandsome 0:1e46c1a32764 624
jaybehandsome 0:1e46c1a32764 625 // Configure the accelerometer for self-test
jaybehandsome 0:1e46c1a32764 626 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
jaybehandsome 0:1e46c1a32764 627 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
jaybehandsome 0:1e46c1a32764 628 wait_ms(25); // wait_ms a while to let the device stabilize
jaybehandsome 0:1e46c1a32764 629
jaybehandsome 0:1e46c1a32764 630 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
jaybehandsome 0:1e46c1a32764 631
jaybehandsome 0:1e46c1a32764 632 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
jaybehandsome 0:1e46c1a32764 633 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 634 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 635 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 636
jaybehandsome 0:1e46c1a32764 637 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
jaybehandsome 0:1e46c1a32764 638 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
jaybehandsome 0:1e46c1a32764 639 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
jaybehandsome 0:1e46c1a32764 640 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
jaybehandsome 0:1e46c1a32764 641 }
jaybehandsome 0:1e46c1a32764 642
jaybehandsome 0:1e46c1a32764 643 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
jaybehandsome 0:1e46c1a32764 644 aSTAvg[ii] /= 200;
jaybehandsome 0:1e46c1a32764 645 gSTAvg[ii] /= 200;
jaybehandsome 0:1e46c1a32764 646 }
jaybehandsome 0:1e46c1a32764 647
jaybehandsome 0:1e46c1a32764 648 // Configure the gyro and accelerometer for normal operation
jaybehandsome 0:1e46c1a32764 649 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
jaybehandsome 0:1e46c1a32764 650 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
jaybehandsome 0:1e46c1a32764 651 wait_ms(25); // wait_ms a while to let the device stabilize
jaybehandsome 0:1e46c1a32764 652
jaybehandsome 0:1e46c1a32764 653 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
jaybehandsome 0:1e46c1a32764 654 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
jaybehandsome 0:1e46c1a32764 655 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
jaybehandsome 0:1e46c1a32764 656 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
jaybehandsome 0:1e46c1a32764 657 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
jaybehandsome 0:1e46c1a32764 658 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
jaybehandsome 0:1e46c1a32764 659 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
jaybehandsome 0:1e46c1a32764 660
jaybehandsome 0:1e46c1a32764 661 // Retrieve factory self-test value from self-test code reads
jaybehandsome 0:1e46c1a32764 662 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
jaybehandsome 0:1e46c1a32764 663 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
jaybehandsome 0:1e46c1a32764 664 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
jaybehandsome 0:1e46c1a32764 665 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
jaybehandsome 0:1e46c1a32764 666 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
jaybehandsome 0:1e46c1a32764 667 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
jaybehandsome 0:1e46c1a32764 668
jaybehandsome 0:1e46c1a32764 669 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
jaybehandsome 0:1e46c1a32764 670 // To get percent, must multiply by 100
jaybehandsome 0:1e46c1a32764 671 for (int i = 0; i < 3; i++) {
jaybehandsome 0:1e46c1a32764 672 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
jaybehandsome 0:1e46c1a32764 673 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
jaybehandsome 0:1e46c1a32764 674 }
jaybehandsome 0:1e46c1a32764 675
jaybehandsome 0:1e46c1a32764 676 }
jaybehandsome 0:1e46c1a32764 677
jaybehandsome 0:1e46c1a32764 678
jaybehandsome 0:1e46c1a32764 679
jaybehandsome 0:1e46c1a32764 680 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
jaybehandsome 0:1e46c1a32764 681 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
jaybehandsome 0:1e46c1a32764 682 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
jaybehandsome 0:1e46c1a32764 683 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
jaybehandsome 0:1e46c1a32764 684 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
jaybehandsome 0:1e46c1a32764 685 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
jaybehandsome 0:1e46c1a32764 686 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
jaybehandsome 0:1e46c1a32764 687 {
jaybehandsome 0:1e46c1a32764 688 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
jaybehandsome 0:1e46c1a32764 689 float norm;
jaybehandsome 0:1e46c1a32764 690 float hx, hy, _2bx, _2bz;
jaybehandsome 0:1e46c1a32764 691 float s1, s2, s3, s4;
jaybehandsome 0:1e46c1a32764 692 float qDot1, qDot2, qDot3, qDot4;
jaybehandsome 0:1e46c1a32764 693
jaybehandsome 0:1e46c1a32764 694 // Auxiliary variables to avoid repeated arithmetic
jaybehandsome 0:1e46c1a32764 695 float _2q1mx;
jaybehandsome 0:1e46c1a32764 696 float _2q1my;
jaybehandsome 0:1e46c1a32764 697 float _2q1mz;
jaybehandsome 0:1e46c1a32764 698 float _2q2mx;
jaybehandsome 0:1e46c1a32764 699 float _4bx;
jaybehandsome 0:1e46c1a32764 700 float _4bz;
jaybehandsome 0:1e46c1a32764 701 float _2q1 = 2.0f * q1;
jaybehandsome 0:1e46c1a32764 702 float _2q2 = 2.0f * q2;
jaybehandsome 0:1e46c1a32764 703 float _2q3 = 2.0f * q3;
jaybehandsome 0:1e46c1a32764 704 float _2q4 = 2.0f * q4;
jaybehandsome 0:1e46c1a32764 705 float _2q1q3 = 2.0f * q1 * q3;
jaybehandsome 0:1e46c1a32764 706 float _2q3q4 = 2.0f * q3 * q4;
jaybehandsome 0:1e46c1a32764 707 float q1q1 = q1 * q1;
jaybehandsome 0:1e46c1a32764 708 float q1q2 = q1 * q2;
jaybehandsome 0:1e46c1a32764 709 float q1q3 = q1 * q3;
jaybehandsome 0:1e46c1a32764 710 float q1q4 = q1 * q4;
jaybehandsome 0:1e46c1a32764 711 float q2q2 = q2 * q2;
jaybehandsome 0:1e46c1a32764 712 float q2q3 = q2 * q3;
jaybehandsome 0:1e46c1a32764 713 float q2q4 = q2 * q4;
jaybehandsome 0:1e46c1a32764 714 float q3q3 = q3 * q3;
jaybehandsome 0:1e46c1a32764 715 float q3q4 = q3 * q4;
jaybehandsome 0:1e46c1a32764 716 float q4q4 = q4 * q4;
jaybehandsome 0:1e46c1a32764 717
jaybehandsome 0:1e46c1a32764 718 // Normalise accelerometer measurement
jaybehandsome 0:1e46c1a32764 719 norm = sqrt(ax * ax + ay * ay + az * az);
jaybehandsome 0:1e46c1a32764 720 if (norm == 0.0f) return; // handle NaN
jaybehandsome 0:1e46c1a32764 721 norm = 1.0f/norm;
jaybehandsome 0:1e46c1a32764 722 ax *= norm;
jaybehandsome 0:1e46c1a32764 723 ay *= norm;
jaybehandsome 0:1e46c1a32764 724 az *= norm;
jaybehandsome 0:1e46c1a32764 725
jaybehandsome 0:1e46c1a32764 726 // Normalise magnetometer measurement
jaybehandsome 0:1e46c1a32764 727 norm = sqrt(mx * mx + my * my + mz * mz);
jaybehandsome 0:1e46c1a32764 728 if (norm == 0.0f) return; // handle NaN
jaybehandsome 0:1e46c1a32764 729 norm = 1.0f/norm;
jaybehandsome 0:1e46c1a32764 730 mx *= norm;
jaybehandsome 0:1e46c1a32764 731 my *= norm;
jaybehandsome 0:1e46c1a32764 732 mz *= norm;
jaybehandsome 0:1e46c1a32764 733
jaybehandsome 0:1e46c1a32764 734 // Reference direction of Earth's magnetic field
jaybehandsome 0:1e46c1a32764 735 _2q1mx = 2.0f * q1 * mx;
jaybehandsome 0:1e46c1a32764 736 _2q1my = 2.0f * q1 * my;
jaybehandsome 0:1e46c1a32764 737 _2q1mz = 2.0f * q1 * mz;
jaybehandsome 0:1e46c1a32764 738 _2q2mx = 2.0f * q2 * mx;
jaybehandsome 0:1e46c1a32764 739 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
jaybehandsome 0:1e46c1a32764 740 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
jaybehandsome 0:1e46c1a32764 741 _2bx = sqrt(hx * hx + hy * hy);
jaybehandsome 0:1e46c1a32764 742 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
jaybehandsome 0:1e46c1a32764 743 _4bx = 2.0f * _2bx;
jaybehandsome 0:1e46c1a32764 744 _4bz = 2.0f * _2bz;
jaybehandsome 0:1e46c1a32764 745
jaybehandsome 0:1e46c1a32764 746 // Gradient decent algorithm corrective step
jaybehandsome 0:1e46c1a32764 747 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
jaybehandsome 0:1e46c1a32764 748 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
jaybehandsome 0:1e46c1a32764 749 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
jaybehandsome 0:1e46c1a32764 750 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
jaybehandsome 0:1e46c1a32764 751 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
jaybehandsome 0:1e46c1a32764 752 norm = 1.0f/norm;
jaybehandsome 0:1e46c1a32764 753 s1 *= norm;
jaybehandsome 0:1e46c1a32764 754 s2 *= norm;
jaybehandsome 0:1e46c1a32764 755 s3 *= norm;
jaybehandsome 0:1e46c1a32764 756 s4 *= norm;
jaybehandsome 0:1e46c1a32764 757
jaybehandsome 0:1e46c1a32764 758 // Compute rate of change of quaternion
jaybehandsome 0:1e46c1a32764 759 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
jaybehandsome 0:1e46c1a32764 760 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
jaybehandsome 0:1e46c1a32764 761 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
jaybehandsome 0:1e46c1a32764 762 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
jaybehandsome 0:1e46c1a32764 763
jaybehandsome 0:1e46c1a32764 764 // Integrate to yield quaternion
jaybehandsome 0:1e46c1a32764 765 q1 += qDot1 * deltat;
jaybehandsome 0:1e46c1a32764 766 q2 += qDot2 * deltat;
jaybehandsome 0:1e46c1a32764 767 q3 += qDot3 * deltat;
jaybehandsome 0:1e46c1a32764 768 q4 += qDot4 * deltat;
jaybehandsome 0:1e46c1a32764 769 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
jaybehandsome 0:1e46c1a32764 770 norm = 1.0f/norm;
jaybehandsome 0:1e46c1a32764 771 q[0] = q1 * norm;
jaybehandsome 0:1e46c1a32764 772 q[1] = q2 * norm;
jaybehandsome 0:1e46c1a32764 773 q[2] = q3 * norm;
jaybehandsome 0:1e46c1a32764 774 q[3] = q4 * norm;
jaybehandsome 0:1e46c1a32764 775
jaybehandsome 0:1e46c1a32764 776 }
jaybehandsome 0:1e46c1a32764 777
jaybehandsome 0:1e46c1a32764 778
jaybehandsome 0:1e46c1a32764 779
jaybehandsome 0:1e46c1a32764 780 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
jaybehandsome 0:1e46c1a32764 781 // measured ones.
jaybehandsome 0:1e46c1a32764 782 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
jaybehandsome 0:1e46c1a32764 783 {
jaybehandsome 0:1e46c1a32764 784 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
jaybehandsome 0:1e46c1a32764 785 float norm;
jaybehandsome 0:1e46c1a32764 786 float hx, hy, bx, bz;
jaybehandsome 0:1e46c1a32764 787 float vx, vy, vz, wx, wy, wz;
jaybehandsome 0:1e46c1a32764 788 float ex, ey, ez;
jaybehandsome 0:1e46c1a32764 789 float pa, pb, pc;
jaybehandsome 0:1e46c1a32764 790
jaybehandsome 0:1e46c1a32764 791 // Auxiliary variables to avoid repeated arithmetic
jaybehandsome 0:1e46c1a32764 792 float q1q1 = q1 * q1;
jaybehandsome 0:1e46c1a32764 793 float q1q2 = q1 * q2;
jaybehandsome 0:1e46c1a32764 794 float q1q3 = q1 * q3;
jaybehandsome 0:1e46c1a32764 795 float q1q4 = q1 * q4;
jaybehandsome 0:1e46c1a32764 796 float q2q2 = q2 * q2;
jaybehandsome 0:1e46c1a32764 797 float q2q3 = q2 * q3;
jaybehandsome 0:1e46c1a32764 798 float q2q4 = q2 * q4;
jaybehandsome 0:1e46c1a32764 799 float q3q3 = q3 * q3;
jaybehandsome 0:1e46c1a32764 800 float q3q4 = q3 * q4;
jaybehandsome 0:1e46c1a32764 801 float q4q4 = q4 * q4;
jaybehandsome 0:1e46c1a32764 802
jaybehandsome 0:1e46c1a32764 803 // Normalise accelerometer measurement
jaybehandsome 0:1e46c1a32764 804 norm = sqrt(ax * ax + ay * ay + az * az);
jaybehandsome 0:1e46c1a32764 805 if (norm == 0.0f) return; // handle NaN
jaybehandsome 0:1e46c1a32764 806 norm = 1.0f / norm; // use reciprocal for division
jaybehandsome 0:1e46c1a32764 807 ax *= norm;
jaybehandsome 0:1e46c1a32764 808 ay *= norm;
jaybehandsome 0:1e46c1a32764 809 az *= norm;
jaybehandsome 0:1e46c1a32764 810
jaybehandsome 0:1e46c1a32764 811 // Normalise magnetometer measurement
jaybehandsome 0:1e46c1a32764 812 norm = sqrt(mx * mx + my * my + mz * mz);
jaybehandsome 0:1e46c1a32764 813 if (norm == 0.0f) return; // handle NaN
jaybehandsome 0:1e46c1a32764 814 norm = 1.0f / norm; // use reciprocal for division
jaybehandsome 0:1e46c1a32764 815 mx *= norm;
jaybehandsome 0:1e46c1a32764 816 my *= norm;
jaybehandsome 0:1e46c1a32764 817 mz *= norm;
jaybehandsome 0:1e46c1a32764 818
jaybehandsome 0:1e46c1a32764 819 // Reference direction of Earth's magnetic field
jaybehandsome 0:1e46c1a32764 820 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
jaybehandsome 0:1e46c1a32764 821 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
jaybehandsome 0:1e46c1a32764 822 bx = sqrt((hx * hx) + (hy * hy));
jaybehandsome 0:1e46c1a32764 823 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
jaybehandsome 0:1e46c1a32764 824
jaybehandsome 0:1e46c1a32764 825 // Estimated direction of gravity and magnetic field
jaybehandsome 0:1e46c1a32764 826 vx = 2.0f * (q2q4 - q1q3);
jaybehandsome 0:1e46c1a32764 827 vy = 2.0f * (q1q2 + q3q4);
jaybehandsome 0:1e46c1a32764 828 vz = q1q1 - q2q2 - q3q3 + q4q4;
jaybehandsome 0:1e46c1a32764 829 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
jaybehandsome 0:1e46c1a32764 830 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
jaybehandsome 0:1e46c1a32764 831 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
jaybehandsome 0:1e46c1a32764 832
jaybehandsome 0:1e46c1a32764 833 // Error is cross product between estimated direction and measured direction of gravity
jaybehandsome 0:1e46c1a32764 834 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
jaybehandsome 0:1e46c1a32764 835 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
jaybehandsome 0:1e46c1a32764 836 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
jaybehandsome 0:1e46c1a32764 837 if (Ki > 0.0f)
jaybehandsome 0:1e46c1a32764 838 {
jaybehandsome 0:1e46c1a32764 839 eInt[0] += ex; // accumulate integral error
jaybehandsome 0:1e46c1a32764 840 eInt[1] += ey;
jaybehandsome 0:1e46c1a32764 841 eInt[2] += ez;
jaybehandsome 0:1e46c1a32764 842 }
jaybehandsome 0:1e46c1a32764 843 else
jaybehandsome 0:1e46c1a32764 844 {
jaybehandsome 0:1e46c1a32764 845 eInt[0] = 0.0f; // prevent integral wind up
jaybehandsome 0:1e46c1a32764 846 eInt[1] = 0.0f;
jaybehandsome 0:1e46c1a32764 847 eInt[2] = 0.0f;
jaybehandsome 0:1e46c1a32764 848 }
jaybehandsome 0:1e46c1a32764 849
jaybehandsome 0:1e46c1a32764 850 // Apply feedback terms
jaybehandsome 0:1e46c1a32764 851 gx = gx + Kp * ex + Ki * eInt[0];
jaybehandsome 0:1e46c1a32764 852 gy = gy + Kp * ey + Ki * eInt[1];
jaybehandsome 0:1e46c1a32764 853 gz = gz + Kp * ez + Ki * eInt[2];
jaybehandsome 0:1e46c1a32764 854
jaybehandsome 0:1e46c1a32764 855 // Integrate rate of change of quaternion
jaybehandsome 0:1e46c1a32764 856 pa = q2;
jaybehandsome 0:1e46c1a32764 857 pb = q3;
jaybehandsome 0:1e46c1a32764 858 pc = q4;
jaybehandsome 0:1e46c1a32764 859 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
jaybehandsome 0:1e46c1a32764 860 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
jaybehandsome 0:1e46c1a32764 861 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
jaybehandsome 0:1e46c1a32764 862 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
jaybehandsome 0:1e46c1a32764 863
jaybehandsome 0:1e46c1a32764 864 // Normalise quaternion
jaybehandsome 0:1e46c1a32764 865 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
jaybehandsome 0:1e46c1a32764 866 norm = 1.0f / norm;
jaybehandsome 0:1e46c1a32764 867 q[0] = q1 * norm;
jaybehandsome 0:1e46c1a32764 868 q[1] = q2 * norm;
jaybehandsome 0:1e46c1a32764 869 q[2] = q3 * norm;
jaybehandsome 0:1e46c1a32764 870 q[3] = q4 * norm;
jaybehandsome 0:1e46c1a32764 871
jaybehandsome 0:1e46c1a32764 872 }
jaybehandsome 0:1e46c1a32764 873 };
jaybehandsome 0:1e46c1a32764 874 #endif