Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: biquadFilter mbed
Diff: main.cpp
- Revision:
- 5:dd261ba7b047
- Parent:
- 4:4de31fc4f912
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Thu Nov 03 10:01:14 2016 +0000 @@ -0,0 +1,275 @@ +#include "mbed.h" +#include "BiQuad.h" +// BUTTON USED IN CALIBRATION +DigitalIn calibrating(SW2); +// BUTTON TO START CALIBRATING +InterruptIn calibrateButton(SW3); +// THE TWO EMG SIGNALS +AnalogIn emg1(A0); +AnalogIn emg2(A1); +Serial pc(USBTX, USBRX); + +// LEDS +DigitalOut led_red(LED_RED); +DigitalOut led_green(LED_GREEN); +DigitalOut led_blue(LED_BLUE); + +// EMG BIQUAD 1 +BiQuadChain bqc1; +//Notch iir filter. +//Notch: 50 +- 2 Hz +BiQuad bq11(9.93756e-01, -1.89024e+00, 9.93756e-01, -1.89024e+00, 9.87512e-01 ); + + +// EMG BIQUAD 2 +BiQuadChain bqc2; +//Notch iir filter. +//Notch: 50 +- 2 Hz +BiQuad bq12( 9.93756e-01, -1.89024e+00, 9.93756e-01, -1.89024e+00, 9.87512e-01 ); + +// ARRAYS USED IN CALIBRATING THE EMG SIGNALS +const int calibrateNumEmgCache = 100; +float calibrateEmgCache1[calibrateNumEmgCache]; //sorted from new to old; +float calibrateEmgCache2[calibrateNumEmgCache]; //sorted from new to old; + +// ARRAYS USED IN CALCULATION OF THE MOVAG +// Values in these arrays contain samples that are already notched and rectified. +const int numEmgCache = 50; +float emgCache1[numEmgCache]; //sorted from new to old; +float emgCache2[numEmgCache]; //sorted from new to old; + + +// THRESHOLDS FOR THE DECISION: BY DEFAULT 0.2, +// BUT SHOULD BE CHANGED IN THE CALIBRATION PHASE AT THE BEGINNING +volatile float threshold1 = 0.2; +volatile float threshold2 = 0.2; + +// NUMBERS +int decided1[numEmgCache]; +int decided2[numEmgCache]; + + +Ticker ticker; +Ticker sampler; + +float sample_frequency = 500.0f; //Hz +float Ts = 1.0f / sample_frequency; +// USED FOR COUNTING HOW MANY SIGNALS HAVE PASSED +volatile int count = 0; + +// FUNC TO SEND THE DATA TO THE MOTOR +void (*motorFunc)(bool, bool); + + +//////////////////////////////////// +///////// HELPER FUNCTIONS ///////// +//////////////////////////////////// +void resetLeds() { + led_red = true; + led_green = true; + led_blue = true; +} + +void addFirst(float newValue, float array[], int size) { + for (int i = size - 2; i >= 0; i--) { + array[i+1] = array[i]; + } + array[0] = newValue; +} +void addFirst(int newValue, int array[], int size) { + for (int i = size - 2; i >= 0; i--) { + array[i+1] = array[i]; + } + array[0] = newValue; +} + +//shifts the array by adding the new emg value up front. +//returns the new calculated average +float movingAverage(float newValue, float array[], int size) { + float sum = 0; + for (int i = size - 2; i >= 0; i--) { + array[i+1] = array[i]; + sum += array[i]; + } + array[0] = newValue; + sum += newValue; + return sum / size; +} + +float sum(float array[], int size) { + float sum = 0; + for (int i = 0; i < size; i++) { + sum += array[i]; + } + return sum; +} + +float mean(float array[], int size) { + return sum(array, size) / size; +} + +float meanSquare(float array[], int size) { + float naam[size]; + for(int i = 0; i < size; i++) { + naam[i] = pow(array[i], 2); + } + return sum(naam, size) / size; +} + +int decide(float value, float threshold) { + return value < threshold ? 0 : 1; +} + +float rectifier(float value) { + return fabs(value - 0.5f)*2.0f; +} + + +void sendToMotor(void (*func)(bool, bool), bool arg1, bool arg2) { + func(arg1, arg2); +} +//////////////////////////////////// +///////// HELPER FUNCTIONS ///////// +//////////////////////////////////// + +void sample() { + float emgOne = emg1.read(); + float notch1 = bqc1.step( emgOne ); + + float emgTwo = emg2.read(); + float notch2 = bqc2.step( emgTwo ); + + float rect1 = rectifier(notch1); + float rect2 = rectifier(notch2); + + float filtered1 = movingAverage( rect1, calibrateEmgCache1, calibrateNumEmgCache); + float filtered2 = movingAverage( rect2, calibrateEmgCache2, calibrateNumEmgCache); +} + +void calibrate() { + while(calibrating) { + led_red = false; + wait(0.5); + led_red = true; + wait(0.5); + } + + // Button pressed for rest measurement + led_red = true; + sampler.attach(&sample, Ts); + led_blue = false; + wait(10); + // 10 seconds sampled + led_blue = true; + sampler.detach(); + float restAvg1 = mean(calibrateEmgCache1, calibrateNumEmgCache); + float restAvg2 = mean(calibrateEmgCache2, calibrateNumEmgCache); + + int i =0; + while(i<3) { + led_green = false; + wait(0.5); + led_green = true; + wait(0.5); + i++; + } + led_green = true; + + while(calibrating) { + led_red = false; + wait(0.5); + led_red = true; + wait(0.5); + } + // Button pressed for contracted measurement + led_red = true; + sampler.attach(&sample, Ts); + led_blue = false; + wait(10); + + // 10 seconds sampled + led_blue = true; + sampler.detach(); + + i =0; + while(i<3) { + led_green = false; + wait(0.5); + led_green = true; + wait(0.5); + i++; + } + + float contAvg1 = mean(calibrateEmgCache1, calibrateNumEmgCache); + float contAvg2 = mean(calibrateEmgCache2, calibrateNumEmgCache); + + threshold1 = (contAvg1 + restAvg1)/2; + threshold2 = (contAvg2 + restAvg2)/2; + pc.printf("threshold1: %f\tthreshold2:%f\n\r", threshold1, threshold2); + +} + +void processEMG() { + float emgOne = emg1.read(); + float emgTwo = emg2.read(); + float notch1 = bqc1.step( emgOne ); + float notch2 = bqc2.step( emgTwo ); + + float rect1 = rectifier(notch1); + float rect2 = rectifier(notch2); + + float filtered1 = movingAverage( rect1, emgCache1, numEmgCache); + float filtered2 = movingAverage( rect2, emgCache2, numEmgCache); + + int decide1 = decide(mean(emgCache1, numEmgCache ), threshold1); + int decide2 = decide(mean(emgCache2, numEmgCache ), threshold2); + addFirst(decide1, decided1, numEmgCache); + addFirst(decide2, decided2, numEmgCache); + + if (count >= 49) { + int counter1=0; + int counter2=0; + for(int i = 0; i < numEmgCache; ++i){ + if(decided1[i] == 0) + ++counter1; + if(decided2[i] == 0) + ++counter2; + } + int avgDecide1 = counter1 > std::ceil(numEmgCache/2.0) ? 0: 1; + int avgDecide2 = counter2 > std::ceil(numEmgCache/2.0) ? 0: 1; + sendToMotor(motorFunc,avgDecide1, avgDecide2); + + count =0; + } else { + count++; + } +} + +void consumeBools(bool x, bool y) { + pc.printf("%d\t%d\r\n", x, y); +} +int main() +{ + pc.baud(115200); + + // initial state + resetLeds(); + + // initialize notch filters + bqc1.add( &bq11 ); + bqc2.add( &bq12 ); + + + calibrateButton.fall(&calibrate); + // TODO CHANGE THIS TO THE DESIERD FUNCTION (THAT JAN MADE) + motorFunc = &consumeBools; + + + // call the calibrating function once at the start + // this function blocks until the calibration phase is over + calibrate(); + + // 500 HZ Ticker + ticker.attach(&processEMG, Ts); + while (true); +}