Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed CANBuffer Watchdog MODSERIAL mbed-rtos xbeeRelay IAP
Fork of SystemManagement by
IMD/IMD.cpp
- Committer:
- pspatel321
- Date:
- 2014-10-25
- Revision:
- 17:c9ce210f6654
- Parent:
- 13:fbd9b3f5a07c
File content as of revision 17:c9ce210f6654:
#include "IMD.h"
#include <math.h>
static IMD* instance;
const uint32_t PCLK = 24000000; // Timer counting clock = 24Mhz
const uint32_t TIMEOUT_TICKS = PCLK*ZERO_HZ_TIMEOUT; // Zeroing timeout in clock ticks = seconds * PCLK
const float EXTRA = 0.01; // Margin on the IMD PWM limits
// Interrupt function, must be static context
void tim0_IRQ() {
// Capture event was found
if (LPC_TIM0->IR & 1<<4) instance->edgeIRQ();
// MR0 (zero Hz timeout) event was found
if (LPC_TIM0->IR & 1) instance->zeroIRQ();
LPC_TIM0->IR=0x3F; // Clear interrupt flags
}
IMD::IMD() {
instance = this;
first = true;
startTime = 0;
widthTicks = 0; // Zero low, so that duty = 0/1 = 0%
periodTicks = 1;
LPC_SC->PCONP |= (1<<1); // Power on timer0
LPC_SC->PCLKSEL0 &= ~(3<<2); // Clock at 24MHz
*(p1_26.pinsel_addr) |= 3 << p1_26.selmode_num; // Set pin as capture pin
*(p1_26.pinmode_addr) |= 3 << p1_26.selmode_num; // Pull down
LPC_TIM0->TCR=2; // Stop counter and hold at 0, for configuration, set to 1 to start operation
LPC_TIM0->IR=0x3F; // Clear any interrupt flags
LPC_TIM0->CTCR=0; // Use pclk, not external pin
LPC_TIM0->PR=0; // No prescale value, clock at full pclk=24Mhz
LPC_TIM0->EMR=0; // Do not use external match pins
NVIC_SetVector(TIMER0_IRQn, (uint32_t)&tim0_IRQ); // Point to the interrupt handler
NVIC_SetPriority(TIMER0_IRQn, 0); // Highest Priority
NVIC_EnableIRQ(TIMER0_IRQn); // Enable IRQ
LPC_TIM0->CCR = RISING; // Generate interrupt on capture, capture on rising edge to start
LPC_TIM0->MCR = 1; // Interrupt on Match0 to establish the zero speed timeout
LPC_TIM0->MR0 = LPC_TIM0->TC+TIMEOUT_TICKS;
LPC_TIM0->TCR = 1; // Start counting, GO!
}
void IMD::edgeIRQ() {
uint32_t type = LPC_TIM0->CCR;
uint32_t capTime = LPC_TIM0->CR0;
LPC_TIM0->MR0 = capTime+TIMEOUT_TICKS; // Set the next zeroing timeout
// Special case - on first pulse after a timeout or on startup, period cannot be calculated
// so set startTime such that periodTicks remains unchanged from its zero state (periodTicks=1)
if (first) {
first = false;
startTime = capTime - 1;
}
if (type == RISING) {
periodTicks = capTime - startTime; // Get the period on Rising edge
startTime = capTime; // Set the start of the next pulse
}
if (type == FALLING) {
widthTicks = capTime - startTime; // Get the pulse width on Falling edge
}
// Switch interrupt types to capture the next edge
if (type == RISING) LPC_TIM0->CCR = FALLING;
if (type == FALLING) LPC_TIM0->CCR = RISING;
}
void IMD::zeroIRQ() {
uint32_t type = LPC_TIM0->CCR;
periodTicks = 1;
first = true;
// Timeout occurred after FALLING edge, now looking for RISING edge
if (type == RISING) {
widthTicks = 0; // Signal is low = 0/1 = 0% duty
}
if (type == FALLING) {
widthTicks = 1; // Signal is high = 1/1 = 100% duty
}
}
float IMD::frequency() {
// Handle the case where we want to say 0Hz not infinity Hz
if (periodTicks == 1 || periodTicks == 0) return 0;
else return (float)(PCLK)/(float)(periodTicks);
}
float IMD::duty() {
return (float)(widthTicks)/(float)(periodTicks);
}
char IMD::status() {
float freq = frequency();
if (freq == 0) return OFF; // IMD off
else if (05 < freq && freq <= 15) return NORMAL; // 10Hz normal mode
else if (15 < freq && freq <= 25) return UNDERVOLT; // 20Hz undervoltage mode
else if (25 < freq && freq <= 35) return SPEEDSTART; // 30Hz speed start mode
else if (45 < freq && freq <= 55) return ERROR; // 40Hz IMD error
else if (55 < freq && freq <= 65) return GROUNDERR; // 50Hz Ground error
else return INVALID; // Invalid
}
float IMD::resistance() {
char stat = status();
float dut = duty();
// In normal or undervoltage mode, where Rf is available
if (stat == 1 || stat == 2) {
if (0.05-EXTRA <= dut && dut >= 0.95+EXTRA) {
float rf = (0.9*1200e3/(dut-0.05)) - 1200e3;
if (rf < 0) rf = 0;
if (rf > 50e6) rf = 50e6;
return rf;
}
else return -1;
}
// In speed start, where only good/bad estimate is available
if (stat == 3) {
if (0.05-EXTRA <= dut && dut >= 0.10+EXTRA) return 50e6; // Good
else if (0.90-EXTRA <= dut && dut >= 0.95+EXTRA) return 0; // Bad
else return -1;
}
return NAN; // Measurement not available in this mode
}
