init
Dependencies: aconno_I2C Lis2dh12 WatchdogTimer
DW1000/DW1000.cpp
- Committer:
- pathfindr
- Date:
- 2020-02-17
- Revision:
- 58:8d4a354816b1
File content as of revision 58:8d4a354816b1:
// Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015 #include "DW1000.h" #include "NRFuart.h" // Change this depending on whether damaged or heatlhy DWM1000 modules are used. const bool DWM1000_DAMAGED = false; //const bool DWM1000_DAMAGED = false; /*DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) { irq.rise(this, &DW1000::ISR); */ DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) { //irq.rise(this, &DW1000::ISR); //setCallbacks(NULL, NULL); select(); deselect(); // Chip must be deselected first resetAll(); // we do a soft reset of the DW1000 everytime the driver starts // Configuration TODO: make method for that // User Manual "2.5.5 Default Configurations that should be modified" p. 22 //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE! // writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); // writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); // writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D); // writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); // writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); // writeRegister32(DW1000_TX_POWER, 0, 0x0E082848); // writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); // writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); // writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal) writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal) writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1 writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5 writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5 writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5 writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5 writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5 writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5 loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158 // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...] writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1) writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error //irq.enable_irq(); } /* void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) { bool RX = false; bool TX = false; if (callbackRX) { this->callbackRX.attach(callbackRX); RX = true; } if (callbackTX) { this->callbackTX.attach(callbackTX); TX = true; } setInterrupt(RX, TX); } */ uint32_t DW1000::getDeviceID() { uint32_t result; readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); return result; } uint64_t DW1000::getEUI() { uint64_t result; readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); return result; } void DW1000::setEUI(uint64_t EUI) { writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); } float DW1000::getVoltage() { uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature float Voltage = buffer[5] * 0.0057 + 2.3; //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration return Voltage; } uint64_t DW1000::getStatus() { return readRegister40(DW1000_SYS_STATUS, 0); } bool DW1000::hasReceivedFrame() { uint64_t status = getStatus(); return status & 0x4000; } void DW1000::clearReceivedFlag() { writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits } bool DW1000::hasTransmissionStarted() { uint64_t status = getStatus(); return status & 0x10; } bool DW1000::hasSentPreamble() { uint64_t status = getStatus(); return status & 0x20; } bool DW1000::hasSentPHYHeader() { uint64_t status = getStatus(); return status & 0x40; } bool DW1000::hasSentFrame() { uint64_t status = getStatus(); return status & 0x80; } void DW1000::clearSentFlag() { writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits } uint64_t DW1000::getSYSTimestamp() { return readRegister40(DW1000_SYS_TIME, 0); } uint64_t DW1000::getRXTimestamp() { return readRegister40(DW1000_RX_TIME, 0); } uint64_t DW1000::getTXTimestamp() { return readRegister40(DW1000_TX_TIME, 0); } float DW1000::getSYSTimestampUS() { return getSYSTimestamp() * TIMEUNITS_TO_US; } float DW1000::getRXTimestampUS() { return getRXTimestamp() * TIMEUNITS_TO_US; } float DW1000::getTXTimestampUS() { return getTXTimestamp() * TIMEUNITS_TO_US; } uint16_t DW1000::getStdNoise() { return readRegister16(DW1000_RX_FQUAL, 0x00); } uint16_t DW1000::getPACC() { uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00); v >>= 20; return static_cast<uint16_t>(v); } uint16_t DW1000::getFPINDEX() { return readRegister16(DW1000_RX_TIME, 0x05); } uint16_t DW1000::getFPAMPL1() { return readRegister16(DW1000_RX_TIME, 0x07); } uint16_t DW1000::getFPAMPL2() { return readRegister16(DW1000_RX_FQUAL, 0x02); } uint16_t DW1000::getFPAMPL3() { return readRegister16(DW1000_RX_FQUAL, 0x04); } uint16_t DW1000::getCIRPWR() { return readRegister16(DW1000_RX_FQUAL, 0x06); } uint8_t DW1000::getPRF() { uint32_t prf_mask = static_cast<uint32_t>(0x1 << 19 | 0x1 << 18); uint32_t prf = readRegister32(DW1000_CHAN_CTRL, 0x00); prf >>= 18; return static_cast<uint8_t>(prf & prf_mask); } void DW1000::sendString(char* message) { sendFrame((uint8_t*)message, strlen(message)+1); } void DW1000::receiveString(char* message) { readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer } void DW1000::sendFrame(uint8_t* message, uint16_t length) { //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames Timer timer; timer.start(); writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame length += 2; // including 2 CRC Bytes length = ((backup & 0xFC) << 8) | (length & 0x03FF); writeRegister16(DW1000_TX_FCTRL, 0, length); stopTRX(); // stop receiving writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit } void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) { clearSentFlag(); // This is necessary, otherwise we pick up the transmission time of the previous send if (TxTimestamp > CONST_2POWER40) { TxTimestamp -= CONST_2POWER40; } //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame length += 2; // including 2 CRC Bytes length = ((backup & 0xFC) << 8) | (length & 0x03FF); writeRegister16(DW1000_TX_FCTRL, 0, length); writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message stopTRX(); // stop receiving writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit } void DW1000::startRX() { writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit wait_us(16); // According to page 81 in the user manual (RXENAB bit) } void DW1000::stopTRX() { writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode by setting the TRXOFF bit } // PRIVATE Methods ------------------------------------------------------------------------------------ void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP wait_us(150); writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock } void DW1000::resetRX() { writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset } void DW1000::hardwareReset(PinName reset_pin) { DigitalInOut reset(reset_pin); hardwareReset(reset); } void DW1000::hardwareReset(DigitalInOut& reset) { if (reset.is_connected()) { // DWM1000 RESET logic. if (DWM1000_DAMAGED) { /* // The following code works for damaged DWM1000 modules. // IMPORTANT: This will damage healthy DWM1000 modules! reset.output(); reset = 1; wait_ms(100); reset = 0; wait_ms(100); reset = 1; wait_ms(100); */ } else { // The following code works for healthy DWM1000 modules reset.output(); reset = 0; wait_ms(100); reset.input(); } } } void DW1000::softwareReset() { stopTRX(); clearReceivedFlag(); clearSentFlag(); } void DW1000::resetAll() { hardwareReset(reset); writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset wait_us(10); // wait for PLL to lock writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset } void DW1000::setInterrupt(bool RX, bool TX) { writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080 } /* void DW1000::ISR() { uint64_t status = getStatus(); if (status & 0x4000) { // a frame was received callbackRX.call(); writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits } if (status & 0x80) { // sending complete callbackTX.call(); writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits } } */ uint16_t DW1000::getFramelength() { uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes return framelength; } // SPI Interface ------------------------------------------------------------------------------------ uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { uint8_t result; readRegister(reg, subaddress, &result, 1); return result; } uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) { uint16_t result; readRegister(reg, subaddress, (uint8_t*)&result, 2); return result; } uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) { uint32_t result; readRegister(reg, subaddress, (uint8_t*)&result, 4); return result; } uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) { uint64_t result; readRegister(reg, subaddress, (uint8_t*)&result, 5); result &= 0xFFFFFFFFFF; // only 40-Bit return result; } void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { writeRegister(reg, subaddress, &buffer, 1); } void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) { writeRegister(reg, subaddress, (uint8_t*)&buffer, 2); } void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) { writeRegister(reg, subaddress, (uint8_t*)&buffer, 4); } void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) { writeRegister(reg, subaddress, (uint8_t*)&buffer, 5); } void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, false); for(int i=0; i<length; i++) // get data buffer[i] = spi.write(0x00); deselect(); } void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { setupTransaction(reg, subaddress, true); for(int i=0; i<length; i++) // put data spi.write(buffer[i]); deselect(); } void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { reg |= (write * DW1000_WRITE_FLAG); // set read/write flag select(); if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte spi.write(reg | DW1000_SUBADDRESS_FLAG); if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and spi.write((uint8_t)(subaddress >> 7)); } else { spi.write((uint8_t)subaddress); } } else { spi.write(reg); // say which register address we want to access } } void DW1000::select() { // always called to start an SPI transmission /* if (irq != NULL) { //irq->disable_irq(); irq.disable_irq(); } */ cs = 0; // set Cable Select pin low to start transmission } void DW1000::deselect() { // always called to end an SPI transmission cs = 1; // set Cable Select pin high to stop transmission /* if (irq != NULL) { //irq->enable_irq(); irq.enable_irq(); } */ }