Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-os nRF24L01P
MX12.cpp
- Committer:
- evedelegue
- Date:
- 2022-02-25
- Revision:
- 9:67d737d8a349
- Child:
- 11:5f2289e0d0e8
File content as of revision 9:67d737d8a349:
/**
* @file MX12.ccp
* @brief This file contains all the methods of the MX12 class
* whose prototypes are in the MX12.h header file
*/
#include "MX12.h"
#include "math.h"
MX12::MX12(PinName tx, PinName rx, int baud)
: _mx12(tx, rx) // initializes UnbufferedSerial object
{
/* Serial bus setup
*/
// // Set desired properties (baud-8-N-1)
_mx12.baud(baud); /* modulation speed */
_mx12.format(
8, /* bits */
SerialBase::None, /* parity */
1 /* stop bit */
);
// Register a callback to process a Rx (receive) interrupt.
_mx12.attach(callback(this, &MX12::_Rx_interrupt), SerialBase::RxIrq);
// variable used for message reception
_status_pck = {.raw = "",
.n_byte = 0,
.servo_id = 0,
.length = 0,
.error = 0,
.n_param = 0,
.param = "",
.received_checksum = 0,
.calculated_checksum = 0,
.parsed = false,
.valid = false
};
_parser_state = {.expected_field = PacketField::Header1,
.byte_index = 0,
.param_index = 0
};
// Internal defaults states
_bus_state = SerialState::Idle;
}
void MX12::SetSpeed(unsigned char mot_id, float speed)
{
char data[2];
// Speed absolute value
int goal = (0x3ff * abs(speed));
// Spin direction (CW is negative)
if (speed < 0) {
goal |= (0x1 << 10);
}
data[0] = goal & 0xff;
data[1] = goal >> 8;
// Send instruction
_bus_state = SerialState::Writing;
rw(mot_id, CONTROL_TABLE_MOVING_SPEED, 2, data);
}
void MX12::SetSpeed_rad_s(unsigned char mot_id, float speed)
{
if (speed > MX12_ABSOLUTE_MAX_SPEED_RAD_S) {
SetSpeed(mot_id, 1);
} else if (speed < -MX12_ABSOLUTE_MAX_SPEED_RAD_S) {
SetSpeed(mot_id, -1);
} else {
SetSpeed(mot_id, speed / MX12_ABSOLUTE_MAX_SPEED_RAD_S);
}
}
char MX12::IsAvailable(void)
{
return (_bus_state == SerialState::Idle);
}
void MX12::rw(unsigned char mot_id, char address, char len, char *data)
{
/* Set variables for reception from servovotor */
_answer = 0;
_status_pck = {.raw = "",
.n_byte = 0,
.servo_id = 0,
.length = 0,
.error = 0,
.n_param = 0,
.param = "",
.received_checksum = 0,
.calculated_checksum = 0,
.parsed = false,
.valid = false
};
_parser_state = {.expected_field = PacketField::Header1,
.byte_index = 0,
.param_index = 0
};
/* Initialise instruction packet to forge.
* Instruction Packet is the command data sent to the servomotor.
*
* |Header1|Header2|Packet ID|Length|Instruction|Param1...ParamN|Checksum|
* |-------|-------|---------|------|-----------|---------------|--------|
* | 0xFF | 0xFF |Packet ID|Length|Instruction|Param1...ParamN| CHKSUM |
* | cmd[0]| cmd[1]| cmd[2] |cmd[3]| cmd[4] |cmd[5]... | |
* \__ ___/ \_ _/ \__ __/
* \/ | \/ \/ |
* mot_id | address data |
* | (len = N-1) |
* \__________________ ________________/
* \/
* Length ( cmd[3] )
*/
char packet[16];
unsigned char packet_length;
/* Initialise checksum to calculate
* It is used to check if packet is damaged during communication.
* Status Checksum is calculated according to the following formula:
*
* Status Checksum = ~( ID + Length + Error + Parameter1 + … Parameter N )
*/
char checksum = 0x00;
/* header 1 = 0xFF (dynamixel protocol 1.0) */
packet[0] = 0xff;
/* header 2 = 0xFF (dynamixel protocol 1.0) */
packet[1] = 0xff;
/* packet ID i.e. servomotor id (dynamixel protocol 1.0) */
packet[2] = mot_id;
checksum += packet[2];
/* Guess instruction type. NULL for read, not NULL for write */
if(data == NULL) { // read instruction
/* byte length of the instruction: parameter and checksum field. */
/* for read instruction: 1 INSTR + */
/* 2 PARAM (starting address, length of data) + 1 CHKSUM */
packet[3] = 4;
checksum += packet[3];
/* set write instruction */
packet[4] = PROTOCOL_INSTRUCTION_READ;
checksum += packet[4];
/* Param 1: address to read in the Control Table of RAM Area */
packet[5] = address;
checksum += packet[5];
/* Param 2: number of bytes to read in the Control Table of RAM Area */
packet[6] = len;
checksum += packet[6];
/* Checksum = ~( ID + Length + Instruction + Param1 + … Param N ) */
packet[7] = ~checksum;
packet_length = 8;
} else { // write instruction
/* byte length of the instruction: parameter and checksum field */
/* For write instruction: 1 INSTR + */
/* (1+len)PARAM (starting Address, bytes to write) + 1 CHKSUM */
packet[3] = 3 + len;
checksum += packet[3];
/* set read instruction */
packet[4] = PROTOCOL_INSTRUCTION_WRITE;
checksum += packet[4];
/* Param 1: address to write in the "Control Table of RAM Area" */
packet[5] = address;
checksum += packet[5];
/* Param 2 to N: data to write in the Control Table of RAM Area */
for(char i = 0; i < len; i++) {
packet[6 + i] = data[i];
checksum += data[i];
}
/* Checksum = ~( ID + Length + Instruction + Param1 + … Param N ) */
packet[6 + len] = ~checksum;
packet_length = 7 + len;
}
// Send packet
if(mot_id != 0xFE) {
for(char i = 0; i < packet_length; i++) {
_mx12.write(&packet[i], 1);
}
}
}
// Debug function to print Serial read
void MX12::PrintSerial()
{
for(int i = 0; i < _status_pck.n_byte; i++) {
printf("%x ", _status_pck.raw[i]);
}
printf("\n");
}
MX12::Status MX12::GetStatus()
{
// Return the corresponding status code
switch(_status_pck.error) {
case 0:
return Ok;
break;
case 1 << 0:
return InputVoltageError;
break;
case 1 << 1:
return AngleLimitError;
break;
case 1 << 2:
return OverheatingError;
break;
case 1 << 3:
return RangeError;
break;
case 1 << 4:
return ChecksumError;
break;
case 1 << 5:
return OverloadError;
break;
case 1 << 6:
return InstructionError;
break;
default:
return Unknown;
}
}
void MX12::_Rx_interrupt()
{
char c;
// Try to read serial
if(_mx12.read(&c, 1)) {
_status_pck.raw[(_parser_state.byte_index)++] = c;
// State-machine parsing
switch(_parser_state.expected_field) {
/* c char is interpreted as a Header1 field */
case PacketField::Header1:
/* do nothing and set next state to Header2 */
_parser_state.expected_field = PacketField::Header2;
break;
/* c char is interpreted as a Header2 field */
case PacketField::Header2:
/* do nothing and set next state to Id */
_parser_state.expected_field = PacketField::Id;
break;
/* c char is interpreted as ID field */
case PacketField::Id:
/* store ID, update checksum and set next state to Length */
_status_pck.servo_id = c;
_status_pck.calculated_checksum += c;
_parser_state.expected_field = PacketField::Length;
break;
/* c char is interpreted as length of message data field
* Length = number of Parameters + 2
* where 2 stands for Length field (1 byte) + Error filed (1 byte)
*/
case PacketField::Length:
/* store number of param into _status_pck.n_param,
* update calculated_checksum and set next state to Error
*/
_status_pck.n_param = c - 2;
_status_pck.calculated_checksum += c;
_parser_state.expected_field = PacketField::Error;
break;
/* c char is interpreted as error status field */
case PacketField::Error:
/* store error status, update checksum
* and set next state to Data
*/
_status_pck.error = c;
_status_pck.calculated_checksum += c;
_parser_state.expected_field = PacketField::Data;
break;
/* c char is interpreted as a param field */
case PacketField::Data:
/* store current param, increase param_index
* and update checksum */
_status_pck.param[(_parser_state.param_index)++] = c;
_status_pck.received_checksum += c;
/* increase param index (_parser_state.dataCount)
* and test if it is the last param to read
*/
if(_parser_state.param_index > _status_pck.n_param) {
/* reset param index and set next state to Checksum */
_parser_state.param_index = 0;
_parser_state.expected_field = PacketField::Checksum;
}
break;
/* c char is interpreted as Checksum field */
case PacketField::Checksum:
/* store received_checksum, set parsed, store n_byte,
* evalutate valid and set next state to Header1 */
_status_pck.received_checksum = c;
_status_pck.parsed = true;
_status_pck.n_byte = _parser_state.byte_index;
_status_pck.valid = (_status_pck.received_checksum == c);
_parser_state.expected_field = PacketField::Header1;
/* set seriel state to Idle */
_bus_state = SerialState::Idle;
break;
default:
/* unexpected case. If it occurs it would be due to a
* code error of this class */
break;
}
}
}
/* Code from previous version of the class */
/*
void MX12::ReadPosition(unsigned char mot_id) {
// Make a request, interrupt takes care of everything else
_state = State::ReadingPosition;
rw(mot_id, 0x24, 2, NULL);
}
float MX12::GetPosition(unsigned char mot_id) {
return _angle[mot_id];
}
*/
void MX12::cmd_moteur(float Vavance, float Vlat, float Wz)
{
// mettre en mode wh
char data[2];
data[1] = 0;
data[0] = 0;
float W1;
float W2;
float W3;
float Rc;
float R;
float x1;
float x2;
float x3;
float y1;
float y2;
float y3;
float a1;
float a2;
float a3;
Rc=0.08; // rayon du chassis*10
R=0.019; // rayon de la roue*10
W1=0;
W2=0;
W3=0;
a1 = 4.74 ;
a2 = -5.8;
a3 = 3.68;
x1 = -0.0032;
x2 = 0.0616;
x3 = -0.0645;
y1 = 0.072;
y2 = -0.0356;
y3 = -0.0376;
//Vtm_smax=0.8; //sert pour calculer valeurs -999->999
//Vnm_smax=0.9;
//Wcrd_smax=2.9;
//if (Vtm_s>Vtm_smax)
// {Vtm_s=Vtm_smax;}
//if (Vnm_s>Vnm_smax)
// {Vnm_s=Vnm_smax;}
//if (Wcrd_s>Wcrd_smax)
// {Wcrd_s=Wcrd_smax;}
//if (Wcrd_s<-Wcrd_smax)
// {Wcrd_s=-Wcrd_smax;}
W1=1/R*(-cosf(a1)*Vavance + sinf(a1)*y1*Wz - sinf(a1)*Vlat + cosf(a1)*x1*Wz); //loi de commande moteur 1
W2=1/R*(-cosf(a2)*Vavance + sinf(a2)*y2*Wz - sinf(a2)*Vlat + cosf(a2)*x2*Wz);
W3=1/R*(-cosf(a3)*Vavance + sinf(a3)*y3*Wz - sinf(a3)*Vlat + cosf(a3)*x3*Wz);
printf("%d %d %dn\r",(int)(1000*W1),(int)(1000*W2),(int)(1000*W3));
SetSpeed_rad_s(1,W1); // impose la vitesse au moteur 1
SetSpeed_rad_s(2,W2);
SetSpeed_rad_s(3,W3);
}
void MX12::eteindre_moteurs()
{
char data[1];
data[0] = 0;
// Send instruction
_bus_state = SerialState::Writing;
rw(1, CONTROL_TABLE_TORQUE_ENABLE, 1, data);
_bus_state = SerialState::Writing;
rw(2, CONTROL_TABLE_TORQUE_ENABLE, 1, data);
_bus_state = SerialState::Writing;
rw(3, CONTROL_TABLE_TORQUE_ENABLE, 1, data);
}
void MX12::cmd_moteur_multiturn(float pos1, float pos2, float pos3)
{
// eteindre les moteurs
eteindre_moteurs();
// mettre en mode multiturn
char data[2];
data[1] = 255;
data[0] = 15;
_bus_state = SerialState::Writing;
rw(1, CONTROL_TABLE_CW_ANGLE_LIMIT, 2, data);
rw(2, CONTROL_TABLE_CW_ANGLE_LIMIT, 2, data);
rw(3, CONTROL_TABLE_CW_ANGLE_LIMIT, 2, data);
_bus_state = SerialState::Writing;
rw(1, CONTROL_TABLE_CCW_ANGLE_LIMIT, 2, data);
rw(2, CONTROL_TABLE_CCW_ANGLE_LIMIT, 2, data);
rw(3, CONTROL_TABLE_CCW_ANGLE_LIMIT, 2, data);
//relever la position
int pas1 = pos1-28672/60;
int pas2 = pos2-28672/60;
int pas3 = pos3-28672/60;
for (int i = 0; i < 61; i++) {
int goal_position1 = i * pas1 - 28672;
if (goal_position1 < 0) {
goal_position1 = goal_position1 + 28627 + 36864;
}
char data1[2];
data1[1] = goal_position1%256;
data1[0] = goal_position1/256;
int goal_position2 = i * pas2 - 28672;
if (goal_position2 < 0) {
goal_position2 = goal_position2 + 28627 + 36864;
}
char data2[2];
data2[1] = goal_position2%256;
data2[0] = goal_position2/256;
int goal_position3 = i * pas3 - 28672;
if (goal_position3 < 0) {
goal_position3 = goal_position3 + 28627 + 36864;
}
char data3[2];
data3[1] = goal_position3%256;
data3[0] = goal_position3/256;
rw(1, CONTROL_TABLE_GOAL_POSITION, 2, data1);
thread_sleep_for(60);
rw(2, CONTROL_TABLE_GOAL_POSITION, 2, data2);
thread_sleep_for(60);
rw(3, CONTROL_TABLE_GOAL_POSITION, 2, data3);
thread_sleep_for(60);
thread_sleep_for(1000);
}
}