Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- demayer
- Date:
- 2020-03-28
- Revision:
- 0:6bf0743ece18
- Child:
- 1:b36bbc1c6d27
File content as of revision 0:6bf0743ece18:
#include "mbed.h"
#include "mbed_events.h"
#include "MPU9250.h"
DigitalOut led1(LED1);
InterruptIn sw(USER_BUTTON);
Thread eventthread;
Thread imuthread;
bool read_imu_isrunning;
// Pin defines
DigitalOut led_green(D4);
//-----------------------------------------------------
//IMU
float sum = 0;
uint32_t sumCount = 0;
char buffer[14];
MPU9250 mpu9250;
Timer t;
Serial pc(USBTX, USBRX); // tx, rx
//-----------------------------------------------------
void rise_handler(void)
{
printf("rise_handler in context %p\r\n", Thread::gettid());
// Toggle LED
led1 = !led1;
for (int i = 0; i<10; i++) {
led_green = !led_green;
wait(0.5);
}
}
void fall_handler(void)
{
printf("fall_handler in context %p\r\n", Thread::gettid());
// Toggle LED
led1 = !led1;
}
void readIMU()
{
while(read_imu_isrunning) {
pc.printf("in thread readIMU\n\r");
// If intPin goes high, all data registers have new data
if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)accelCount[1]*aRes - accelBias[1];
az = (float)accelCount[2]*aRes - accelBias[2];
mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
gy = (float)gyroCount[1]*gRes - gyroBias[1];
gz = (float)gyroCount[2]*gRes - gyroBias[2];
mpu9250.readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
}
Now = t.read_us();
deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat;
sumCount++;
// if(lastUpdate - firstUpdate > 10000000.0f) {
// beta = 0.04; // decrease filter gain after stabilized
// zeta = 0.015; // increasey bias drift gain after stabilized
// }
// Pass gyro rate as rad/s
mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
//mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = t.read_ms() - _count;
if (delt_t > 50) { // update LCD once per half-second independent of read rate
/*pc.printf("ax = %f", 1000*ax);
pc.printf(" ay = %f", 1000*ay);
pc.printf(" az = %f mg\n\r", 1000*az);
pc.printf("gx = %f", gx);
pc.printf(" gy = %f", gy);
pc.printf(" gz = %f deg/s\n\r", gz);
pc.printf("gx = %f", mx);
pc.printf(" gy = %f", my);
pc.printf(" gz = %f mG\n\r", mz);*/
tempCount = mpu9250.readTempData(); // Read the adc values
temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
//pc.printf(" temperature = %f C\n\r", temperature);
/*pc.printf("q0 = %f\n\r", q[0]);
pc.printf("q1 = %f\n\r", q[1]);
pc.printf("q2 = %f\n\r", q[2]);
pc.printf("q3 = %f\n\r", q[3]);*/
/* lcd.clear();
lcd.printString("MPU9250", 0, 0);
lcd.printString("x y z", 0, 1);
sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
lcd.printString(buffer, 0, 2);
sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
lcd.printString(buffer, 0, 3);
sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
lcd.printString(buffer, 0, 4);
*/
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw -= 2.93f; // Declination at 8572 Berg TG: +2° 56'
roll *= 180.0f / PI;
pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
//pc.printf("average rate = %f\n\r", (float) sumCount/sum);
// sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
// lcd.printString(buffer, 0, 4);
// sprintf(buffer, "rate = %f", (float) sumCount/sum);
// lcd.printString(buffer, 0, 5);
myled= !myled;
_count = t.read_ms();
if(_count > 1<<21) {
t.start(); // start the timer over again if ~30 minutes has passed
_count = 0;
deltat= 0;
lastUpdate = t.read_us();
}
sum = 0;
sumCount = 0;
}
}
}
void imuSetup()
{
read_imu_isrunning = true;
//Set up I2C
i2c.frequency(400000); // use fast (400 kHz) I2C
pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
t.start();
// lcd.setBrightness(0.05);
// Read the WHO_AM_I register, this is a good test of communication
uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
pc.printf("I AM 0x%x\n\r", whoami);
pc.printf("I SHOULD BE 0x71\n\r");
if (whoami == 0x71) { // WHO_AM_I should always be 0x68
pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
pc.printf("MPU9250 is online...\n\r");
sprintf(buffer, "0x%x", whoami);
wait(1);
mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
pc.printf("x accel bias = %f\n\r", accelBias[0]);
pc.printf("y accel bias = %f\n\r", accelBias[1]);
pc.printf("z accel bias = %f\n\r", accelBias[2]);
wait(2);
mpu9250.initMPU9250();
pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
mpu9250.initAK8963(magCalibration);
pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
wait(1);
} else {
pc.printf("Could not connect to MPU9250: \n\r");
pc.printf("%#x \n", whoami);
sprintf(buffer, "WHO_AM_I 0x%x", whoami);
while(1) {
// Loop forever if communication doesn't happen
pc.printf("commication not happening\n\r");
}
}
mpu9250.getAres(); // Get accelerometer sensitivity
mpu9250.getGres(); // Get gyro sensitivity
mpu9250.getMres(); // Get magnetometer sensitivity
pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
magbias[1] = +120.; // User environmental x-axis correction in milliGauss
magbias[2] = +125.; // User environmental x-axis correction in milliGauss
}
int main()
{
pc.baud(9600);
imuSetup();
imuthread.start(readIMU);
// Request the shared queue
EventQueue *queue = mbed_event_queue();
printf("Starting in context %p\r\n", Thread::gettid());
// The 'rise' handler will execute in IRQ context
sw.rise(queue->event(rise_handler));
// The 'fall' handler will execute in the context of the shared queue (actually the main thread)
sw.fall(queue->event(fall_handler));
// Setup complete, so we now dispatch the shared queue from main
queue->dispatch_forever();
}