PES4 / Mbed OS Queue_02
Revision:
1:b36bbc1c6d27
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU9250.cpp	Sat Apr 11 08:15:48 2020 +0000
@@ -0,0 +1,877 @@
+#include "MPU9250.h"
+
+
+
+uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
+uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
+uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
+uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
+float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
+
+//Set up I2C, (SDA,SCL)
+I2C i2c(PB_9, PB_8);
+
+DigitalOut myled(LED1);
+
+// Pin definitions
+int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
+
+int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
+int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
+int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
+float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
+float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
+float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
+int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
+float temperature;
+float SelfTest[6];
+
+int delt_t = 0; // used to control display output rate
+int _count = 0;  // used to control display output rate
+
+// parameters for 6 DoF sensor fusion calculations
+float PI = 3.14159265358979323846f;
+float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
+#define Ki 0.0f
+
+float pitch, yaw, roll;
+float vx, vy, vz;
+float deltat = 0.0f;                             // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
+float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
+float v_trans[3] = {0.0f, 0.0f, 0.0f};                 // vector to hold translative velocities
+float a_old[3] = {0.00f, 0.00f, 0.00f};
+float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
+
+
+accData_t myData;
+MPU9250 mpu9250;
+Timer t;
+Serial pc(USBTX, USBRX); // tx, rx
+
+#define SAMPLE_TIME 100
+
+
+float sum = 0;
+uint32_t sumCount = 0;
+char buffer[14];
+
+
+//===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+
+void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+    char data_write[2];
+    data_write[0] = subAddress;
+    data_write[1] = data;
+    i2c.write(address, data_write, 2, 0);
+}
+
+char MPU9250::readByte(uint8_t address, uint8_t subAddress)
+{
+    char data[1]; // `data` will store the register data
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, 1, 0);
+    return data[0];
+}
+
+void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+{
+    char data[14];
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, count, 0);
+    for(int ii = 0; ii < count; ii++) {
+        dest[ii] = data[ii];
+    }
+}
+
+
+void MPU9250::getMres()
+{
+    switch (Mscale) {
+        // Possible magnetometer scales (and their register bit settings) are:
+        // 14 bit resolution (0) and 16 bit resolution (1)
+        case MFS_14BITS:
+            mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
+            break;
+        case MFS_16BITS:
+            mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
+            break;
+    }
+}
+
+
+void MPU9250::getGres()
+{
+    switch (Gscale) {
+        // Possible gyro scales (and their register bit settings) are:
+        // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+        case GFS_250DPS:
+            gRes = 250.0/32768.0;
+            break;
+        case GFS_500DPS:
+            gRes = 500.0/32768.0;
+            break;
+        case GFS_1000DPS:
+            gRes = 1000.0/32768.0;
+            break;
+        case GFS_2000DPS:
+            gRes = 2000.0/32768.0;
+            break;
+    }
+}
+
+
+void MPU9250::getAres()
+{
+    switch (Ascale) {
+        // Possible accelerometer scales (and their register bit settings) are:
+        // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+        case AFS_2G:
+            aRes = 2.0/32768.0;
+            break;
+        case AFS_4G:
+            aRes = 4.0/32768.0;
+            break;
+        case AFS_8G:
+            aRes = 8.0/32768.0;
+            break;
+        case AFS_16G:
+            aRes = 16.0/32768.0;
+            break;
+    }
+}
+
+
+void MPU9250::readAccelData(int16_t * destination)
+{
+    uint8_t rawData[6];  // x/y/z accel register data stored here
+    readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+    destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+    destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+}
+
+void MPU9250::readGyroData(int16_t * destination)
+{
+    uint8_t rawData[6];  // x/y/z gyro register data stored here
+    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+    destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+    destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+    destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+}
+
+void MPU9250::readMagData(int16_t * destination)
+{
+    uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
+    if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
+        readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
+        uint8_t c = rawData[6]; // End data read by reading ST2 register
+        if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+            destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
+            destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
+            destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
+        }
+    }
+}
+
+int16_t MPU9250::readTempData()
+{
+    uint8_t rawData[2];  // x/y/z gyro register data stored here
+    readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array
+    return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+}
+
+
+void MPU9250::resetMPU9250()
+{
+    // reset device
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait(0.1);
+}
+
+void MPU9250::initAK8963(float * destination)
+{
+    // First extract the factory calibration for each magnetometer axis
+    uint8_t rawData[3];  // x/y/z gyro calibration data stored here
+    writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+    wait(0.01);
+    writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
+    wait(0.01);
+    readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
+    destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
+    destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;
+    destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f;
+    writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+    wait(0.01);
+    // Configure the magnetometer for continuous read and highest resolution
+    // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
+    // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
+    writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
+    wait(0.01);
+}
+
+
+void MPU9250::initMPU9250()
+{
+// Initialize MPU9250 device
+// wake up device
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
+    wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
+
+// get stable time source
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+// Configure Gyro and Accelerometer
+// Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
+// DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+// Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+    writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
+
+// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+    writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+
+// Set gyroscope full scale range
+// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+    uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+
+// Set accelerometer configuration
+    c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
+
+// Set accelerometer sample rate configuration
+// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
+// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
+    c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
+
+// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
+// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
+
+    // Configure Interrupts and Bypass Enable
+    // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
+    // can join the I2C bus and all can be controlled by the Arduino as master
+    writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
+    writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+}
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+void MPU9250::calibrateMPU9250(float * dest1, float * dest2)
+{
+    uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+    uint16_t ii, packet_count, fifo_count;
+    int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+    wait(0.1);
+
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
+    wait(0.2);
+
+// Configure device for bias calculation
+    writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+    writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+    writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+    writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+    writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+    writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+    wait(0.015);
+
+// Configure MPU9250 gyro and accelerometer for bias calculation
+    writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+    writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+    uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+    uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+    writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO
+    writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
+    wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+    writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+    readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+    fifo_count = ((uint16_t)data[0] << 8) | data[1];
+    packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+    for (ii = 0; ii < packet_count; ii++) {
+        int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+        readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+        accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+        accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+        accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;
+        gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+        gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+        gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+
+        accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+        accel_bias[1] += (int32_t) accel_temp[1];
+        accel_bias[2] += (int32_t) accel_temp[2];
+        gyro_bias[0]  += (int32_t) gyro_temp[0];
+        gyro_bias[1]  += (int32_t) gyro_temp[1];
+        gyro_bias[2]  += (int32_t) gyro_temp[2];
+
+    }
+    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t) packet_count;
+    accel_bias[2] /= (int32_t) packet_count;
+    gyro_bias[0]  /= (int32_t) packet_count;
+    gyro_bias[1]  /= (int32_t) packet_count;
+    gyro_bias[2]  /= (int32_t) packet_count;
+
+    if(accel_bias[2] > 0L) {
+        accel_bias[2] -= (int32_t) accelsensitivity;   // Remove gravity from the z-axis accelerometer bias calculation
+    } else {
+        accel_bias[2] += (int32_t) accelsensitivity;
+    }
+
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+    data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+    data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+    data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+    data[3] = (-gyro_bias[1]/4)       & 0xFF;
+    data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+    data[5] = (-gyro_bias[2]/4)       & 0xFF;
+
+/// Push gyro biases to hardware registers
+    /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
+      writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
+      writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
+      writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
+      writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
+      writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
+    */
+    dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+    dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+    dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+    int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+    readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+    accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+    uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+    uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+
+    for(ii = 0; ii < 3; ii++) {
+        if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+    }
+
+    // Construct total accelerometer bias, including calculated average accelerometer bias from above
+    accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+    accel_bias_reg[1] -= (accel_bias[1]/8);
+    accel_bias_reg[2] -= (accel_bias[2]/8);
+
+    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+    data[1] = (accel_bias_reg[0])      & 0xFF;
+    data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+    data[3] = (accel_bias_reg[1])      & 0xFF;
+    data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+    data[5] = (accel_bias_reg[2])      & 0xFF;
+    data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+// Apparently this is not working for the acceleration biases in the MPU-9250
+// Are we handling the temperature correction bit properly?
+// Push accelerometer biases to hardware registers
+    /*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
+      writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
+      writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
+      writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
+      writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
+      writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
+    */
+// Output scaled accelerometer biases for manual subtraction in the main program
+    dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
+    dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+    dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+}
+
+
+// Accelerometer and gyroscope self test; check calibration wrt factory settings
+void MPU9250::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+{
+    uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
+    uint8_t selfTest[6];
+    int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
+    float factoryTrim[6];
+    uint8_t FS = 0;
+
+    writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
+    writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
+
+    for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
+
+        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+        aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+        aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+        gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+        gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+    }
+
+    for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
+        aAvg[ii] /= 200;
+        gAvg[ii] /= 200;
+    }
+
+// Configure the accelerometer for self-test
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+    wait(0.025); // Delay a while to let the device stabilize
+
+    for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
+
+        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+        aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+        aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+        gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+        gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+    }
+
+    for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
+        aSTAvg[ii] /= 200;
+        gSTAvg[ii] /= 200;
+    }
+
+// Configure the gyro and accelerometer for normal operation
+    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
+    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
+    wait(0.025); // Delay a while to let the device stabilize
+
+    // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
+    selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
+    selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
+    selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
+    selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
+    selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
+    selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
+
+    // Retrieve factory self-test value from self-test code reads
+    factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[0] - 1.0) ));  // FT[Xa] factory trim calculation
+    factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[1] - 1.0) ));  // FT[Ya] factory trim calculation
+    factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[2] - 1.0) ));  // FT[Za] factory trim calculation
+    factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[3] - 1.0) ));  // FT[Xg] factory trim calculation
+    factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[4] - 1.0) ));  // FT[Yg] factory trim calculation
+    factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01, ((float)selfTest[5] - 1.0) ));  // FT[Zg] factory trim calculation
+
+// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+// To get percent, must multiply by 100
+    for (int i = 0; i < 3; i++) {
+        destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
+        destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
+    }
+
+}
+
+
+
+// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
+// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+void MPU9250::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, _2bx, _2bz;
+    float s1, s2, s3, s4;
+    float qDot1, qDot2, qDot3, qDot4;
+
+    // Auxiliary variables to avoid repeated arithmetic
+    float _2q1mx;
+    float _2q1my;
+    float _2q1mz;
+    float _2q2mx;
+    float _4bx;
+    float _4bz;
+    float _2q1 = 2.0f * q1;
+    float _2q2 = 2.0f * q2;
+    float _2q3 = 2.0f * q3;
+    float _2q4 = 2.0f * q4;
+    float _2q1q3 = 2.0f * q1 * q3;
+    float _2q3q4 = 2.0f * q3 * q4;
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
+
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
+
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
+
+    // Reference direction of Earth's magnetic field
+    _2q1mx = 2.0f * q1 * mx;
+    _2q1my = 2.0f * q1 * my;
+    _2q1mz = 2.0f * q1 * mz;
+    _2q2mx = 2.0f * q2 * mx;
+    hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+    hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+    _2bx = sqrt(hx * hx + hy * hy);
+    _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+    _4bx = 2.0f * _2bx;
+    _4bz = 2.0f * _2bz;
+
+    // Gradient decent algorithm corrective step
+    s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
+    norm = 1.0f/norm;
+    s1 *= norm;
+    s2 *= norm;
+    s3 *= norm;
+    s4 *= norm;
+
+    // Compute rate of change of quaternion
+    qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+    qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+    qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+    qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+
+    // Integrate to yield quaternion
+    q1 += qDot1 * deltat;
+    q2 += qDot2 * deltat;
+    q3 += qDot3 * deltat;
+    q4 += qDot4 * deltat;
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+    norm = 1.0f/norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+
+}
+
+
+
+// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
+// measured ones.
+void MPU9250::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, bx, bz;
+    float vx, vy, vz, wx, wy, wz;
+    float ex, ey, ez;
+    float pa, pb, pc;
+
+    // Auxiliary variables to avoid repeated arithmetic
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
+
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
+
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
+
+    // Reference direction of Earth's magnetic field
+    hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
+    hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
+    bx = sqrt((hx * hx) + (hy * hy));
+    bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
+
+    // Estimated direction of gravity and magnetic field
+    vx = 2.0f * (q2q4 - q1q3);
+    vy = 2.0f * (q1q2 + q3q4);
+    vz = q1q1 - q2q2 - q3q3 + q4q4;
+    wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
+    wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
+    wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
+
+    // Error is cross product between estimated direction and measured direction of gravity
+    ex = (ay * vz - az * vy) + (my * wz - mz * wy);
+    ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
+    ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
+    if (Ki > 0.0f) {
+        eInt[0] += ex;      // accumulate integral error
+        eInt[1] += ey;
+        eInt[2] += ez;
+    } else {
+        eInt[0] = 0.0f;     // prevent integral wind up
+        eInt[1] = 0.0f;
+        eInt[2] = 0.0f;
+    }
+
+    // Apply feedback terms
+    gx = gx + Kp * ex + Ki * eInt[0];
+    gy = gy + Kp * ey + Ki * eInt[1];
+    gz = gz + Kp * ez + Ki * eInt[2];
+
+    // Integrate rate of change of quaternion
+    pa = q2;
+    pb = q3;
+    pc = q4;
+    q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
+    q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
+    q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
+    q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
+
+    // Normalise quaternion
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
+    norm = 1.0f / norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+
+}
+
+// Integrates the acceleration to get the boards translative velocity
+void MPU9250::velocityUpdate(float ax, float ay, float az)
+{
+    // short name local variable for readability
+
+    v_trans[0] = deltat*0.5*(a_old[0] + ax*GRAVITATION) + v_trans[0];
+    v_trans[1] = deltat*0.5*(a_old[1] + ay*GRAVITATION) + v_trans[1];
+    v_trans[2] = deltat*0.5*(a_old[2] + az*GRAVITATION + GRAVITATION) + v_trans[2];
+
+    a_old[0] = ax*GRAVITATION;
+    a_old[1] = ay*GRAVITATION;
+    a_old[2] = az*GRAVITATION;
+}
+
+void MPU9250::readIMU()
+{
+    // If intPin goes high, all data registers have new data
+    if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+
+        mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
+        // Now we'll calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];
+        az = (float)accelCount[2]*aRes - accelBias[2];
+
+        mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes - gyroBias[1];
+        gz = (float)gyroCount[2]*gRes - gyroBias[2];
+
+        mpu9250.readMagData(magCount);  // Read the x/y/z adc values
+        // Calculate the magnetometer values in milliGauss
+        // Include factory calibration per data sheet and user environmental corrections
+        mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
+        my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+        mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
+    }
+
+    pc.printf("ax, ay, az, delta_t;%f;%f;%f;%f\n\r", ax, ay, az*GRAVITATION + GRAVITATION, deltat);
+
+    Now = t.read_us();
+
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+    lastUpdate = Now;
+
+    sum += deltat;
+    sumCount++;
+
+
+    mpu9250.velocityUpdate(ax, ay, az);
+
+    // Pass gyro rate as rad/s
+    mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+    //mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+
+    // Serial print and/or display at 0.5 s rate independent of data rates
+    delt_t = t.read_ms() - _count;
+
+    //-----------------------------------------
+    // Update displayed value
+    if (delt_t > SAMPLE_TIME) {
+
+
+
+        //pc.printf("vx, vy, vz: %f %f %f\n\r", v_trans[0], v_trans[1], v_trans[2]);
+
+
+        yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+        pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+        roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+        pitch *= 180.0f / PI;
+        yaw   *= 180.0f / PI;
+        yaw   -= 2.93f; // Declination at 8572 Berg TG: +2° 56'
+        roll  *= 180.0f / PI;
+        
+        myData.ax = yaw;
+        myData.ay = pitch;
+        myData.az = roll;
+
+
+        myled= !myled;
+        _count = t.read_ms();
+
+        if(_count > 1<<21) {
+            t.start(); // start the timer over again if ~30 minutes has passed
+            _count = 0;
+            deltat= 0;
+            lastUpdate = t.read_us();
+        }
+        sum = 0;
+        sumCount = 0;
+    }
+}
+
+
+void MPU9250::imuSetup()
+{
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
+
+    pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
+
+    t.start();
+//  lcd.setBrightness(0.05);
+
+
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x71\n\r");
+
+    if (whoami == 0x71) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+        pc.printf("MPU9250 is online...\n\r");
+        sprintf(buffer, "0x%x", whoami);
+        wait(1);
+
+        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+        pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+        pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+        pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+        pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+        pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+        pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
+        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+        pc.printf("x accel bias = %f\n\r", accelBias[0]);
+        pc.printf("y accel bias = %f\n\r", accelBias[1]);
+        pc.printf("z accel bias = %f\n\r", accelBias[2]);
+        wait(2);
+        mpu9250.initMPU9250();
+        pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        mpu9250.initAK8963(magCalibration);
+        pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
+        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
+        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
+        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
+        wait(1);
+    } else {
+        pc.printf("Could not connect to MPU9250: \n\r");
+        pc.printf("%#x \n",  whoami);
+        sprintf(buffer, "WHO_AM_I 0x%x", whoami);
+
+        while(1) {
+            // Loop forever if communication doesn't happen
+            pc.printf("no IMU detected (verify if it's plugged in)\n\r");
+        }
+    }
+
+    mpu9250.getAres(); // Get accelerometer sensitivity
+    mpu9250.getGres(); // Get gyro sensitivity
+    mpu9250.getMres(); // Get magnetometer sensitivity
+    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
+    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
+    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
+    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
+    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+}
+
+accData_t MPU9250::getVelocityFromIMU(){
+    readIMU();
+    
+    return myData;
+}
\ No newline at end of file