PES4 / Mbed 2 deprecated PES4

Dependencies:   mbed

Committer:
McGasser
Date:
Sun Mar 29 00:07:59 2020 +0000
Revision:
6:40b1004cfbe7
Parent:
4:6db9395e43d8
Uebung 2 angepasst;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
demayer 3:5b211a56c6fb 1 /* MPU9250 Basic Example Code
demayer 3:5b211a56c6fb 2 by: Kris Winer
demayer 3:5b211a56c6fb 3 date: April 1, 2014
demayer 3:5b211a56c6fb 4 license: Beerware - Use this code however you'd like. If you
demayer 3:5b211a56c6fb 5 find it useful you can buy me a beer some time.
demayer 3:5b211a56c6fb 6
demayer 3:5b211a56c6fb 7 Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
demayer 3:5b211a56c6fb 8 getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
demayer 3:5b211a56c6fb 9 allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
demayer 3:5b211a56c6fb 10 Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
demayer 3:5b211a56c6fb 11
demayer 3:5b211a56c6fb 12 SDA and SCL should have external pull-up resistors (to 3.3V).
demayer 3:5b211a56c6fb 13 10k resistors are on the EMSENSR-9250 breakout board.
demayer 3:5b211a56c6fb 14
demayer 3:5b211a56c6fb 15 Hardware setup:
demayer 3:5b211a56c6fb 16 MPU9250 Breakout --------- Arduino
demayer 3:5b211a56c6fb 17 VDD ---------------------- 3.3V
demayer 3:5b211a56c6fb 18 VDDI --------------------- 3.3V
demayer 3:5b211a56c6fb 19 SDA ----------------------- A4
demayer 3:5b211a56c6fb 20 SCL ----------------------- A5
demayer 3:5b211a56c6fb 21 GND ---------------------- GND
demayer 3:5b211a56c6fb 22
demayer 3:5b211a56c6fb 23 Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library.
demayer 3:5b211a56c6fb 24 Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
demayer 3:5b211a56c6fb 25 We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
demayer 3:5b211a56c6fb 26 We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
demayer 3:5b211a56c6fb 27 */
demayer 3:5b211a56c6fb 28
demayer 3:5b211a56c6fb 29 //#include "ST_F401_84MHZ.h"
demayer 3:5b211a56c6fb 30 //F401_init84 myinit(0);
demayer 3:5b211a56c6fb 31 #include <mbed.h>
demayer 3:5b211a56c6fb 32 #include "Adafruit_WS2801.h"
demayer 3:5b211a56c6fb 33 #include "Definitionen.h"
demayer 3:5b211a56c6fb 34 #include "MPU9250.h"
demayer 3:5b211a56c6fb 35
demayer 3:5b211a56c6fb 36 // Using NOKIA 5110 monochrome 84 x 48 pixel display
demayer 3:5b211a56c6fb 37 // pin 9 - Serial clock out (SCLK)
demayer 3:5b211a56c6fb 38 // pin 8 - Serial data out (DIN)
demayer 3:5b211a56c6fb 39 // pin 7 - Data/Command select (D/C)
demayer 3:5b211a56c6fb 40 // pin 5 - LCD chip select (CS)
demayer 3:5b211a56c6fb 41 // pin 6 - LCD reset (RST)
demayer 3:5b211a56c6fb 42 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
demayer 3:5b211a56c6fb 43
demayer 3:5b211a56c6fb 44 float sum = 0;
demayer 3:5b211a56c6fb 45 uint32_t sumCount = 0;
demayer 3:5b211a56c6fb 46 char buffer[14];
demayer 3:5b211a56c6fb 47
demayer 4:6db9395e43d8 48 Adafruit_WS2801 leds( LED_NUM, SPI_MOSI, SPI_SCK, WS2801_RGB );
demayer 4:6db9395e43d8 49
demayer 3:5b211a56c6fb 50 MPU9250 mpu9250;
demayer 3:5b211a56c6fb 51
demayer 3:5b211a56c6fb 52 Timer t;
demayer 3:5b211a56c6fb 53
demayer 3:5b211a56c6fb 54 Serial pc(USBTX, USBRX); // tx, rx
demayer 3:5b211a56c6fb 55
demayer 3:5b211a56c6fb 56 int main()
demayer 3:5b211a56c6fb 57 {
demayer 3:5b211a56c6fb 58 // MICHI
demayer 3:5b211a56c6fb 59 //---------------------------------------------------------
demayer 3:5b211a56c6fb 60 int aktuell = 0;
demayer 3:5b211a56c6fb 61 int sensor = 5;
demayer 3:5b211a56c6fb 62 //---------------------------------------------------------
demayer 3:5b211a56c6fb 63
demayer 3:5b211a56c6fb 64 pc.baud(9600);
demayer 3:5b211a56c6fb 65
demayer 3:5b211a56c6fb 66 //Set up I2C
demayer 3:5b211a56c6fb 67 i2c.frequency(400000); // use fast (400 kHz) I2C
demayer 3:5b211a56c6fb 68
demayer 3:5b211a56c6fb 69 pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
demayer 3:5b211a56c6fb 70
demayer 3:5b211a56c6fb 71 t.start();
demayer 3:5b211a56c6fb 72 // lcd.setBrightness(0.05);
demayer 3:5b211a56c6fb 73
demayer 3:5b211a56c6fb 74
demayer 3:5b211a56c6fb 75 // Read the WHO_AM_I register, this is a good test of communication
demayer 3:5b211a56c6fb 76 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
demayer 3:5b211a56c6fb 77 pc.printf("I AM 0x%x\n\r", whoami);
demayer 3:5b211a56c6fb 78 pc.printf("I SHOULD BE 0x71\n\r");
demayer 3:5b211a56c6fb 79
demayer 3:5b211a56c6fb 80 if (whoami == 0x71) { // WHO_AM_I should always be 0x68
demayer 3:5b211a56c6fb 81 pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
demayer 3:5b211a56c6fb 82 pc.printf("MPU9250 is online...\n\r");
demayer 3:5b211a56c6fb 83 sprintf(buffer, "0x%x", whoami);
demayer 3:5b211a56c6fb 84 wait(1);
demayer 3:5b211a56c6fb 85
demayer 3:5b211a56c6fb 86 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
demayer 3:5b211a56c6fb 87 mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
demayer 3:5b211a56c6fb 88 pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
demayer 3:5b211a56c6fb 89 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
demayer 3:5b211a56c6fb 90 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
demayer 3:5b211a56c6fb 91 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
demayer 3:5b211a56c6fb 92 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
demayer 3:5b211a56c6fb 93 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
demayer 3:5b211a56c6fb 94 mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
demayer 3:5b211a56c6fb 95 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
demayer 3:5b211a56c6fb 96 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
demayer 3:5b211a56c6fb 97 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
demayer 3:5b211a56c6fb 98 pc.printf("x accel bias = %f\n\r", accelBias[0]);
demayer 3:5b211a56c6fb 99 pc.printf("y accel bias = %f\n\r", accelBias[1]);
demayer 3:5b211a56c6fb 100 pc.printf("z accel bias = %f\n\r", accelBias[2]);
demayer 3:5b211a56c6fb 101 wait(2);
demayer 3:5b211a56c6fb 102 mpu9250.initMPU9250();
demayer 3:5b211a56c6fb 103 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
demayer 3:5b211a56c6fb 104 mpu9250.initAK8963(magCalibration);
demayer 3:5b211a56c6fb 105 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
demayer 3:5b211a56c6fb 106 pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
demayer 3:5b211a56c6fb 107 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
demayer 3:5b211a56c6fb 108 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
demayer 3:5b211a56c6fb 109 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
demayer 3:5b211a56c6fb 110 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
demayer 3:5b211a56c6fb 111 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
demayer 3:5b211a56c6fb 112 wait(1);
demayer 3:5b211a56c6fb 113 } else {
demayer 3:5b211a56c6fb 114 pc.printf("Could not connect to MPU9250: \n\r");
demayer 3:5b211a56c6fb 115 pc.printf("%#x \n", whoami);
demayer 3:5b211a56c6fb 116 sprintf(buffer, "WHO_AM_I 0x%x", whoami);
demayer 3:5b211a56c6fb 117
demayer 3:5b211a56c6fb 118 while(1) ; // Loop forever if communication doesn't happen
demayer 3:5b211a56c6fb 119 }
demayer 3:5b211a56c6fb 120
demayer 3:5b211a56c6fb 121 mpu9250.getAres(); // Get accelerometer sensitivity
demayer 3:5b211a56c6fb 122 mpu9250.getGres(); // Get gyro sensitivity
demayer 3:5b211a56c6fb 123 mpu9250.getMres(); // Get magnetometer sensitivity
demayer 3:5b211a56c6fb 124 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
demayer 3:5b211a56c6fb 125 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
demayer 3:5b211a56c6fb 126 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
demayer 3:5b211a56c6fb 127 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
demayer 3:5b211a56c6fb 128 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
demayer 3:5b211a56c6fb 129 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
demayer 3:5b211a56c6fb 130
demayer 3:5b211a56c6fb 131 while(1) {
demayer 3:5b211a56c6fb 132 // MICHI
demayer 3:5b211a56c6fb 133 //---------------------------------------------------------
McGasser 6:40b1004cfbe7 134 //aktuell = leds.show_Aktuell(aktuell,sensor);
demayer 3:5b211a56c6fb 135 //wait(1);
demayer 3:5b211a56c6fb 136 //---------------------------------------------------------
demayer 3:5b211a56c6fb 137
demayer 3:5b211a56c6fb 138
demayer 3:5b211a56c6fb 139 // If intPin goes high, all data registers have new data
demayer 3:5b211a56c6fb 140 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
demayer 3:5b211a56c6fb 141
demayer 3:5b211a56c6fb 142 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
demayer 3:5b211a56c6fb 143 // Now we'll calculate the accleration value into actual g's
demayer 3:5b211a56c6fb 144 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
demayer 3:5b211a56c6fb 145 ay = (float)accelCount[1]*aRes - accelBias[1];
demayer 3:5b211a56c6fb 146 az = (float)accelCount[2]*aRes - accelBias[2];
demayer 3:5b211a56c6fb 147
demayer 3:5b211a56c6fb 148 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
demayer 3:5b211a56c6fb 149 // Calculate the gyro value into actual degrees per second
demayer 3:5b211a56c6fb 150 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
demayer 3:5b211a56c6fb 151 gy = (float)gyroCount[1]*gRes - gyroBias[1];
demayer 3:5b211a56c6fb 152 gz = (float)gyroCount[2]*gRes - gyroBias[2];
demayer 3:5b211a56c6fb 153
demayer 3:5b211a56c6fb 154 mpu9250.readMagData(magCount); // Read the x/y/z adc values
demayer 3:5b211a56c6fb 155 // Calculate the magnetometer values in milliGauss
demayer 3:5b211a56c6fb 156 // Include factory calibration per data sheet and user environmental corrections
demayer 3:5b211a56c6fb 157 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
demayer 3:5b211a56c6fb 158 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
demayer 3:5b211a56c6fb 159 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
demayer 3:5b211a56c6fb 160 }
demayer 3:5b211a56c6fb 161
demayer 3:5b211a56c6fb 162 Now = t.read_us();
demayer 3:5b211a56c6fb 163 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
demayer 3:5b211a56c6fb 164 lastUpdate = Now;
demayer 3:5b211a56c6fb 165
demayer 3:5b211a56c6fb 166 sum += deltat;
demayer 3:5b211a56c6fb 167 sumCount++;
demayer 3:5b211a56c6fb 168
demayer 3:5b211a56c6fb 169 // if(lastUpdate - firstUpdate > 10000000.0f) {
demayer 3:5b211a56c6fb 170 // beta = 0.04; // decrease filter gain after stabilized
demayer 3:5b211a56c6fb 171 // zeta = 0.015; // increasey bias drift gain after stabilized
demayer 3:5b211a56c6fb 172 // }
demayer 3:5b211a56c6fb 173
demayer 3:5b211a56c6fb 174 // Pass gyro rate as rad/s
demayer 3:5b211a56c6fb 175 mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
demayer 3:5b211a56c6fb 176 //mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
demayer 3:5b211a56c6fb 177
demayer 3:5b211a56c6fb 178 // Serial print and/or display at 0.5 s rate independent of data rates
demayer 3:5b211a56c6fb 179 delt_t = t.read_ms() - _count;
demayer 3:5b211a56c6fb 180 if (delt_t > 50) { // update LCD once per half-second independent of read rate
demayer 3:5b211a56c6fb 181
demayer 3:5b211a56c6fb 182 /*pc.printf("ax = %f", 1000*ax);
demayer 3:5b211a56c6fb 183 pc.printf(" ay = %f", 1000*ay);
demayer 3:5b211a56c6fb 184 pc.printf(" az = %f mg\n\r", 1000*az);
demayer 3:5b211a56c6fb 185
demayer 3:5b211a56c6fb 186 pc.printf("gx = %f", gx);
demayer 3:5b211a56c6fb 187 pc.printf(" gy = %f", gy);
demayer 3:5b211a56c6fb 188 pc.printf(" gz = %f deg/s\n\r", gz);
demayer 3:5b211a56c6fb 189
demayer 3:5b211a56c6fb 190 pc.printf("gx = %f", mx);
demayer 3:5b211a56c6fb 191 pc.printf(" gy = %f", my);
demayer 3:5b211a56c6fb 192 pc.printf(" gz = %f mG\n\r", mz);*/
demayer 3:5b211a56c6fb 193
demayer 3:5b211a56c6fb 194 tempCount = mpu9250.readTempData(); // Read the adc values
demayer 3:5b211a56c6fb 195 temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
demayer 3:5b211a56c6fb 196 //pc.printf(" temperature = %f C\n\r", temperature);
demayer 3:5b211a56c6fb 197
demayer 3:5b211a56c6fb 198 /*pc.printf("q0 = %f\n\r", q[0]);
demayer 3:5b211a56c6fb 199 pc.printf("q1 = %f\n\r", q[1]);
demayer 3:5b211a56c6fb 200 pc.printf("q2 = %f\n\r", q[2]);
demayer 3:5b211a56c6fb 201 pc.printf("q3 = %f\n\r", q[3]);*/
demayer 3:5b211a56c6fb 202
demayer 3:5b211a56c6fb 203 /* lcd.clear();
demayer 3:5b211a56c6fb 204 lcd.printString("MPU9250", 0, 0);
demayer 3:5b211a56c6fb 205 lcd.printString("x y z", 0, 1);
demayer 3:5b211a56c6fb 206 sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
demayer 3:5b211a56c6fb 207 lcd.printString(buffer, 0, 2);
demayer 3:5b211a56c6fb 208 sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
demayer 3:5b211a56c6fb 209 lcd.printString(buffer, 0, 3);
demayer 3:5b211a56c6fb 210 sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
demayer 3:5b211a56c6fb 211 lcd.printString(buffer, 0, 4);
demayer 3:5b211a56c6fb 212 */
demayer 3:5b211a56c6fb 213 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
demayer 3:5b211a56c6fb 214 // In this coordinate system, the positive z-axis is down toward Earth.
demayer 3:5b211a56c6fb 215 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
demayer 3:5b211a56c6fb 216 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
demayer 3:5b211a56c6fb 217 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
demayer 3:5b211a56c6fb 218 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
demayer 3:5b211a56c6fb 219 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
demayer 3:5b211a56c6fb 220 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
demayer 3:5b211a56c6fb 221 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
demayer 3:5b211a56c6fb 222 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
demayer 3:5b211a56c6fb 223 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
demayer 3:5b211a56c6fb 224 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
demayer 3:5b211a56c6fb 225 pitch *= 180.0f / PI;
demayer 3:5b211a56c6fb 226 yaw *= 180.0f / PI;
demayer 3:5b211a56c6fb 227 yaw -= 2.93f; // Declination at 8572 Berg TG: +2° 56'
demayer 3:5b211a56c6fb 228 roll *= 180.0f / PI;
demayer 3:5b211a56c6fb 229
demayer 3:5b211a56c6fb 230 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
McGasser 6:40b1004cfbe7 231
McGasser 6:40b1004cfbe7 232 //*****************************************************************
McGasser 6:40b1004cfbe7 233 // Übung 1
McGasser 6:40b1004cfbe7 234
McGasser 6:40b1004cfbe7 235 aktuell = leds.Wasserwaage(pitch,aktuell);
McGasser 6:40b1004cfbe7 236
McGasser 6:40b1004cfbe7 237 //*****************************************************************
McGasser 6:40b1004cfbe7 238
McGasser 6:40b1004cfbe7 239
demayer 3:5b211a56c6fb 240 //pc.printf("average rate = %f\n\r", (float) sumCount/sum);
demayer 3:5b211a56c6fb 241 // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
demayer 3:5b211a56c6fb 242 // lcd.printString(buffer, 0, 4);
demayer 3:5b211a56c6fb 243 // sprintf(buffer, "rate = %f", (float) sumCount/sum);
demayer 3:5b211a56c6fb 244 // lcd.printString(buffer, 0, 5);
demayer 3:5b211a56c6fb 245
demayer 3:5b211a56c6fb 246 myled= !myled;
demayer 3:5b211a56c6fb 247 _count = t.read_ms();
demayer 3:5b211a56c6fb 248
demayer 3:5b211a56c6fb 249 if(_count > 1<<21) {
demayer 3:5b211a56c6fb 250 t.start(); // start the timer over again if ~30 minutes has passed
demayer 3:5b211a56c6fb 251 _count = 0;
demayer 3:5b211a56c6fb 252 deltat= 0;
demayer 3:5b211a56c6fb 253 lastUpdate = t.read_us();
demayer 3:5b211a56c6fb 254 }
demayer 3:5b211a56c6fb 255 sum = 0;
demayer 3:5b211a56c6fb 256 sumCount = 0;
demayer 3:5b211a56c6fb 257 }
demayer 3:5b211a56c6fb 258 }
demayer 3:5b211a56c6fb 259 }
McGasser 2:60b7ddea313d 260
McGasser 2:60b7ddea313d 261
McGasser 2:60b7ddea313d 262
McGasser 2:60b7ddea313d 263