READY TO RUMBLE
Dependencies: mbed
Fork of Micromouse_alpha_copy_copy by
Controller.cpp
- Committer:
- ruesipat
- Date:
- 2018-03-07
- Revision:
- 0:a9fe4ef404bf
- Child:
- 1:d9e840c48b1e
File content as of revision 0:a9fe4ef404bf:
#include "Controller.h" using namespace std; const float Controller::PERIOD = 0.001f; // Periode von 1 ms const float Controller::COUNTS_PER_TURN = 1200.0f; // Encoder-Aufloesung const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // in [rad/s] const float Controller::KN = 40.0f; // Drehzahlkonstante in [rpm/V] const float Controller::KP = 0.02f; // Regler-Parameter const float Controller::MAX_VOLTAGE = 12.0f; // Batteriespannung in [V] const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimale Duty-Cycle const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximale Duty-Cycle Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounter& counterLeft, EncoderCounter& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight) { // Initialisieren der PWM Ausgaenge pwmLeft.period(0.00005f); // PWM Periode von 50 us pwmLeft = 0.5f; // Duty-Cycle von 50% pwmRight.period(0.00005f); // PWM Periode von 50 us pwmRight = 0.5f; // Duty-Cycle von 50% // Initialisieren von lokalen Variabeln previousValueCounterLeft = counterLeft.read(); previousValueCounterRight = counterRight.read(); speedLeftFilter.setPeriod(PERIOD); speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); speedRightFilter.setPeriod(PERIOD); speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); desiredSpeedLeft = 0.0f; desiredSpeedRight = 0.0f; actualSpeedLeft = 0.0f; actualSpeedRight = 0.0f; // Starten des periodischen Tasks ticker.attach(callback(this, &Controller::run), PERIOD); } Controller::~Controller() { ticker.detach(); // Stoppt den periodischen Task } void Controller::setDesiredSpeedLeft(float desiredSpeedLeft) { this->desiredSpeedLeft = desiredSpeedLeft; } void Controller::setDesiredSpeedRight(float desiredSpeedRight) { this->desiredSpeedRight = desiredSpeedRight; } void Controller::run() { // Berechnen die effektiven Drehzahlen der Motoren in [rpm] short valueCounterLeft = counterLeft.read(); short valueCounterRight = counterRight.read(); short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; previousValueCounterLeft = valueCounterLeft; previousValueCounterRight = valueCounterRight; actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft /COUNTS_PER_TURN/PERIOD*60.0f); actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight /COUNTS_PER_TURN/PERIOD*60.0f); // Berechnen der Motorspannungen Uout float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; float voltageRight = KP*(desiredSpeedRight-actualSpeedRight) +desiredSpeedRight/KN; // Berechnen, Limitieren und Setzen der Duty-Cycle float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; pwmLeft = dutyCycleLeft; float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; pwmRight = dutyCycleRight; }