Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Fork of Robocode by
source/Movement.cpp
- Committer:
- cittecla
- Date:
- 2017-05-12
- Revision:
- 120:cdf7a6751f9e
- Parent:
- 117:66d64dbd1b36
- Child:
- 122:8bfb39434fb7
File content as of revision 120:cdf7a6751f9e:
/**
* Movement function library
* Handels Movement of the Robot
**/
#include "Movement.h"
#define OFFSET_GREIFER_TO_IRSENSOR 0.2 // Constant for distance between front IR Sensor and the postion where the Greifer is in grabbing Position
#define OFFSET_WHEELS 0.09 // Offset of the wheels from the max pos
bool is_moving = false;
float wanted_dist = 0;
bool is_turning = false;
float wanted_deg = 0;
bool direction = false;
float restdegAfterstop = 0; // Variable for Rest degree we still have to cover after e.g. 1 brick found but its not really a brick so we turn further until e.g 60 degrees covered.
float TOLERANCE_BRICK_OR_OBSTACLE = 0.08f; // Variable for Brick detection it sets how much upper sensor and lower can differ that its still detected as an obstacle and not a brick
Timer t;
Timer t8; // timer used for waiting enough distance measurements
int search_state = 0;
int coord_move_state = 0;
int list_step = 0;
float left = 0;
float right = 0;
bool devider = true;
int moving()
{
return 0;
}
/**
* Stops current movement immediately
**/
void stop_move()
{
set_speed(0,0);
wanted_dist = 0;
is_moving = false;
}
/**
* Stops current turn immediately
**/
void stop_turn()
{
set_speed(0,0);
wanted_deg = 0;
is_turning = false;
}
/**
* move for wanted distance on circle with a given radius
* needs to be called until return < 0
* if calling distance not 0: distance and radius initilisation.
* by Claudio Citterio
**/
float move_for_distance_with_radius(float distance, float r)
{
if(distance != 0) {
is_moving = true;
wanted_dist = fabsf(distance);
float circumference = r*2*(float)M_PI;
float circumference_inner = ((r-(float)OFFSET_WHEELS)*2*(float)M_PI);
float circumference_outer = ((r+(float)OFFSET_WHEELS)*2*(float)M_PI);
float max_speed = 50;
float inner_speed = max_speed/circumference*circumference_inner;
float outer_speed = max_speed/circumference*circumference_outer;
//reduce outer speed to max speed
float multiplier = 1.0f/inner_speed*max_speed;
inner_speed *= multiplier;
outer_speed *= multiplier;
if(r < 0.21f) {
outer_speed *= 0.8f;
inner_speed *= 0.8f;
}
if(r != 0) {
//move with turn
if(distance > 0) { //move forward
direction = 1;
left = outer_speed;
right = inner_speed;
} else { //move backward
direction = 0;
left = -outer_speed;
right = -inner_speed;
}
} else {
//normal straight movement
printf("move straight\r\n");
if(distance > 0) { //move forward
direction = 1;
left = max_speed;
right = max_speed;
} else { //move backward
direction = 0;
left = -max_speed;
right = -max_speed;
}
}
set_speed(left, right);
devider = true;
t.reset();
t.start();
} else {
float speed_multiplier = 0.6f;
if(wanted_dist < 0.10f && devider == true) {
//printf("devided\r\n");
devider = false;
left = left * speed_multiplier;
right = right * speed_multiplier;
//printf("left: %f || right: %f\r\n", left, right);
set_speed(left, right);
}
float speed_left = get_speed_left();
float speed_right = get_speed_right();
wanted_dist -= (2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * ((fabsf(speed_left)+fabsf(speed_right))/2) * 0.1f;
t.reset();
if(wanted_dist <= 0) { //distance covered, Stop function
set_speed(0,0);
is_moving = false;
t.stop();
}
}
printf("remaining distance to cover: %f\r\n", wanted_dist);
return wanted_dist;
}
/**
* move for wanted distance
* needs to be called until return < 0
* if calling distance not 0: distance initilisation.
* by Claudio Citterio
**/
float move_for_distance(float distance)
{
printf("move for distance\r\n");
if(distance != 0) {
is_moving = true;
wanted_dist = fabsf(distance);
if(distance > 0) { //move forward
direction = 1;
left = 50.0f;
right = 50.0f;
} else { //move backward
direction = 0;
left = -50.0f;
right = -50.0f;
}
printf("set speed %f\r\n", left);
set_speed(left, right);
devider = true;
t.reset();
t.start();
} else {
float speed_multiplier = 0.6f;
if(wanted_dist < 0.10f && devider == true) {
//printf("devided\r\n");
devider = false;
left = left * speed_multiplier;
right = right * speed_multiplier;
//printf("left: %f || right: %f\r\n", left, right);
set_speed(left, right);
}
float speed_left = get_speed_left();
printf("speed left: %f\r\n", speed_left);
wanted_dist -= (2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * fabsf(speed_left)*0.1f;
t.reset();
if(wanted_dist <= 0) { //distance covered, Stop function
set_speed(0,0);
is_moving = false;
t.stop();
}
}
printf("remaining distance to cover: %f\r\n", wanted_dist);
return wanted_dist;
}
/**
* turn for wanted degree
* needs to be called until return < 0
* if deg not 0: turn initilisation.
* Claudio Citterio
**/
float turn_for_deg(float deg, float multiplier)
{
if(deg != 0) {
is_turning = true;
wanted_deg = fabsf(deg);
if(deg < 0) { // turn left
direction = 1;
left = -20.0f*multiplier;
right = 20.0f*multiplier;
} else { // turn right
direction = 0;
left = 20.0f*multiplier;
right = -20.0f*multiplier;
}
set_speed(left, right);
devider = true;
t.reset();
t.start();
} else {
float speed_multiplier = 0.6f;
if(wanted_deg < 10.0f && devider == true) {
devider = false;
left = left * speed_multiplier;
right = right * speed_multiplier;
set_speed(left, right);
}
float speed_left = get_speed_left();
wanted_deg -= 360/(2*circle_r*M_PI) * ((2*(float)wheel_r*(float)M_PI)/(2*M_PI) * t.read() * fabsf(speed_left)*0.1f);
t.reset();
if(wanted_deg <= 0) {
set_speed(0,0);
is_turning = false;
t.stop();
}
}
printf("remaining deg %f\r\n", wanted_deg);
return (wanted_deg);
}
/** has errors
* moves to next coordinate from coordinate list
* by Claudio Citterio
**/
/*
int move_to_brick_by_list()
{
switch(coord_move_state) {
case 0:
// init move to brick by list
list_step = 1;
coord_move_state = 1;
break;
case 1:
// get positions, coords, heading and distances
float current_heading = get_current_heading();
position current_pos = get_current_pos();
position next_pos = walkpath[list_step];
coord_move_state = 2;
break;
case 2:
// check if path is still possible with updated map or target reached
if(next_pos.x == 0 && next_pos.y == 0) {
// target reached
coord_move_state = 0;
return 47;
}
if(obstacle_list[next_pos.x][next_pos.y] != 0) {
// path obstructed
coord_move_state = 0;
return 35;
}
coord_move_state = 3;
break;
case 3:
// calc new headings
// nord(-y) = 0 grad
if(current_pos.y > next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 315;
distance = sqrt2;
if(current_pos.x == next_pos.x) needed_heading = 0;
distance = 1;
if(current_pos.x < next_pos.x) needed_heading = 45;
distance = sqrt2;
}
if(current_pos.y == next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 270;
distance = 1;
if(current_pos.x == next_pos.x) //error same position;
if(current_pos.x < next_pos.x) needed_heading = 90;
distance = 1;
}
if(current_pos.y < next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 225;
distance = sqrt2;
if(current_pos.x == next_pos.x) needed_heading = 180;
distance = 1;
if(current_pos.x < next_pos.x) needed_heading = 135;
distance = sqrt2;
}
if(needed_heading != current_heading) {
coord_move_state = 5;
} else {
coord_move_state = 8;
}
break;
case 5:
// turn init with new heading
break;
case 6:
//turn until new heading == heading
break;
case 8:
// move init with distance
break;
case 9:
// move until distacne covered
}
}
*/
int move_to_next_coord()
{
float current_heading = get_current_heading();
position current_pos = get_current_pos();
position next_pos = get_next_pos();
float needed_heading = 0;
float distance = 0;
// nord(-y) = 0 grad
if(current_pos.y > next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 315;
distance = sqrt2;
if(current_pos.x == next_pos.x) needed_heading = 0;
distance = 1;
if(current_pos.x < next_pos.x) needed_heading = 45;
distance = sqrt2;
}
if(current_pos.y == next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 270;
distance = 1;
if(current_pos.x == next_pos.x) //error same position;
if(current_pos.x < next_pos.x) needed_heading = 90;
distance = 1;
}
if(current_pos.y < next_pos.y) {
if(current_pos.x > next_pos.x) needed_heading = 225;
distance = sqrt2;
if(current_pos.x == next_pos.x) needed_heading = 180;
distance = 1;
if(current_pos.x < next_pos.x) needed_heading = 135;
distance = sqrt2;
}
if(needed_heading != current_heading) {
turn_for_deg(needed_heading-current_heading,1.0f);
} else {
move_for_distance(distance);
}
return 0;
}
/**
* this function searchs a nearby brick, moves towards it and grabbs it
* by Tobias Berger, state machine by Claudio Citterio
**/
int move_in_search_for_brick()
{
float upper = getDistanceIR(2); // get distance from upper max Sensor
float lower = getDistanceIR(3); // get distance from Lower max Sensor
//printf("Current Search State: >%d<\r\n",search_state);
switch (search_state) {
case 0: //first cycle right
turn_for_deg(60.0f,0.8f); // call function and start turning
search_state = 1;
break;
case 1: // turn right and check for obstacles
if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor
if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor
stop_turn();
t8.reset();
t8.start(); // start timer for enough measurements
restdegAfterstop = turn_for_deg(0,1); // get restdegrees from turn function. if a brick is falsly detected we turn restdegAfterstop to finisch search turn
search_state = 2; // brick found
printf("Brick first detetection lower: %f upper:%f",lower,upper);
}
} else {
search_state = 1; // go to same state
if(turn_for_deg(0, 1) < 0) { // when first 60degree rotation finished
stop_turn();
search_state = 4; // go to init turn other direction
}
}
break;
case 2: // Check if Sensor after waiting still the same value
if(t8.read() > 0.1f) {
if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor
if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor
search_state = 10; // When still the same go to move forward
} else {
search_state=3; // When afterwait not the same go to continue turning
}
}
}
break;
case 3: // init continue turning for restdeg
turn_for_deg(restdegAfterstop,0.8f); // call function and start turning for restdegrees after stop
search_state = 1; // go back to turn and search
break;
case 4: // init turn left 120 deg
turn_for_deg(-120.0f,0.8f);
search_state = 5;
break;
case 5: // turn and search opposite direction
if((lower<0.45f)&&(lower>0.05f)) { // if something is in the range of 10 to 80cm at the lower Sensor
if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor
stop_turn();
t8.reset();
t8.start(); // start timer for enough measurements
restdegAfterstop = turn_for_deg(0,1); // get restdegrees from turn function. if a brick is falsly detected we turn restdegAfterstop to finisch search turn
search_state = 6; // brick found
printf("Brick first detetection lower: %f upper:%f",lower,upper);
}
} else {
search_state = 5; // go to same state
if(turn_for_deg(0, 1) < 0) { // when 60degree rotation finished
stop_turn();
search_state = 20; // error go to default state, bc nothing found
}
}
break;
case 6: // Check if Sensor after waiting still detect brick
if(t8.read() > 0.1f) {
if((lower<0.45f)&&(lower>0.08f)) { // if something is in the range of 10 to 80cm at the lower Sensor
if(fabsf((upper-lower))>TOLERANCE_BRICK_OR_OBSTACLE) { // and nothing is detected with the upper Sensor
search_state = 10; // When still the same go to move forward
} else {
search_state=7; // When afterwait not the same go to continue turning
}
}
}
break;
case 7:// init continue turning for restdeg
turn_for_deg(restdegAfterstop,0.8f); // call function and start turning for restdegrees after stop
search_state = 5; // go back to turn and search
break;
case 10: // first cycle move forward
float distance_to_Brick = lower-(float)OFFSET_GREIFER_TO_IRSENSOR; // calculate
move_for_distance(distance_to_Brick);
search_state =11;
break;
case 11: // move forward
if(move_for_distance(0) < 0) {
//Safety Function:
if (getDistanceIR(2)<0.08f) {
stop_move();
//move_for_distance(-0.10f);
search_state = 0;
}
stop_move();
search_state = 12;
}
break;
case 12: // Grabbing
return 50; //main state machine set as Grabbing
default:
printf("default State - move in search for brick\r\n");
// error
break;
}
return 47; //called until function is done
}
