..
TLSSocketWrapper.cpp
- Committer:
- ImranBilalButt
- Date:
- 2019-08-29
- Revision:
- 1:a6995e66c9f7
- Parent:
- 0:5f745af3ec9b
File content as of revision 1:a6995e66c9f7:
/* * PackageLicenseDeclared: Apache-2.0 * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "TLSSocketWrapper.h" #include "drivers/Timer.h" #define TRACE_GROUP "TLSW" #include "mbed-trace/mbed_trace.h" #include "mbed_mem_trace.h" #include "mbedtls/debug.h" //#include "mbedtls/config.h" //#include "mbedtls/timing.h" //#include "timing_alt.h" TLSSocketWrapper::TLSSocketWrapper(Socket *transport, const char *hostname) : _client_auth(false), _keep_transport_open(false), _handshake_completed(false), _transport(transport) { tls_init(); if (hostname) { set_hostname(hostname); } } TLSSocketWrapper::~TLSSocketWrapper() { if (_transport) { close(); } } void TLSSocketWrapper::set_hostname(const char *hostname) { if (is_tls_allocated()) { pc.printf("ssl hostname is set\n"); mbedtls_ssl_set_hostname(_ssl, hostname); } } void TLSSocketWrapper::keep_transport_open() { _keep_transport_open = true; } nsapi_error_t TLSSocketWrapper::set_root_ca_cert(const void *root_ca, size_t len) { if (!is_tls_allocated()) { return NSAPI_ERROR_NO_SOCKET; } /* Parse CA certification */ int ret; if ((ret = mbedtls_x509_crt_parse(_cacert, static_cast<const unsigned char *>(root_ca), len)) != 0) { print_mbedtls_error("mbedtls_x509_crt_parse", ret); return NSAPI_ERROR_PARAMETER; } pc.printf("Root CA Certificate Setting ... OK\n"); return NSAPI_ERROR_OK; } nsapi_error_t TLSSocketWrapper::set_root_ca_cert(const char *root_ca_pem) { return set_root_ca_cert(root_ca_pem, strlen(root_ca_pem) + 1); } nsapi_error_t TLSSocketWrapper::set_client_cert_key(const char *client_cert_pem, const char *client_private_key_pem) { return set_client_cert_key(client_cert_pem, strlen(client_cert_pem) + 1, client_private_key_pem, strlen(client_private_key_pem) + 1); } nsapi_error_t TLSSocketWrapper::set_client_cert_key(const void *client_cert, size_t client_cert_len, const void *client_private_key_pem, size_t client_private_key_len) { if (!is_tls_allocated()) { return NSAPI_ERROR_NO_SOCKET; } int ret; if((NULL != client_cert) && (NULL != client_private_key_pem)) { mbedtls_x509_crt_init(_clicert); if((ret = mbedtls_x509_crt_parse(_clicert, static_cast<const unsigned char *>(client_cert), client_cert_len)) != 0) { print_mbedtls_error("mbedtls_x509_crt_parse", ret); return NSAPI_ERROR_PARAMETER; } pc.printf("Client Certificate Setting ... ok\n"); mbedtls_pk_init(_pkctx); if((ret = mbedtls_pk_parse_key(_pkctx, static_cast<const unsigned char *>(client_private_key_pem), client_private_key_len, NULL, 0)) != 0) { print_mbedtls_error("mbedtls_pk_parse_key", ret); return NSAPI_ERROR_PARAMETER; } pc.printf("Client pvt. Key Setting ... ok\n"); _client_auth = true; } return NSAPI_ERROR_OK; } /* The supported CERT ciphersuites are as follows: CipherSuite TLS_RSA_WITH_AES_128_CCM = {0xC0,0x9C} CipherSuite TLS_RSA_WITH_AES_256_CCM = {0xC0,0x9D) CipherSuite TLS_DHE_RSA_WITH_AES_128_CCM = {0xC0,0x9E} CipherSuite TLS_DHE_RSA_WITH_AES_256_CCM = {0xC0,0x9F} CipherSuite TLS_RSA_WITH_AES_128_CCM_8 = {0xC0,0xA0} CipherSuite TLS_RSA_WITH_AES_256_CCM_8 = {0xC0,0xA1) CipherSuite TLS_DHE_RSA_WITH_AES_128_CCM_8 = {0xC0,0xA2} CipherSuite TLS_DHE_RSA_WITH_AES_256_CCM_8 = {0xC0,0xA3} // The supported PSK ciphersuites are as follows: CipherSuite TLS_PSK_WITH_AES_128_CCM = {0xC0,0xA4} CipherSuite TLS_PSK_WITH_AES_256_CCM = {0xC0,0xA5) CipherSuite TLS_DHE_PSK_WITH_AES_128_CCM = {0xC0,0xA6} CipherSuite TLS_DHE_PSK_WITH_AES_256_CCM = {0xC0,0xA7} CipherSuite TLS_PSK_WITH_AES_128_CCM_8 = {0xC0,0xA8} CipherSuite TLS_PSK_WITH_AES_256_CCM_8 = {0xC0,0xA9) CipherSuite TLS_PSK_DHE_WITH_AES_128_CCM_8 = {0xC0,0xAA} CipherSuite TLS_PSK_DHE_WITH_AES_256_CCM_8 = {0xC0,0xAB} // The supported PSK Cipher is (TLS) TLS_PSK_WITH_RC4_128_SHA = { 0x00, 0x8A }; TLS_PSK_WITH_3DES_EDE_CBC_SHA = { 0x00, 0x8B }; TLS_PSK_WITH_AES_128_CBC_SHA = { 0x00, 0x8C }; TLS_PSK_WITH_AES_256_CBC_SHA = { 0x00, 0x8D }; */ int TLSSocketWrapper::set_client1_kpsa_kpsaID_cipher(){ const unsigned char _kpsa[5] = { 0x01, 0x02, 0x03, 0x04, 0x05 }; const unsigned char *_kpsaID = "AE123-LOCK@in.provider.com"; // 15 Bytes PSK-ID int kpsa_len = strlen((const char*) _kpsa); int kpsaID_len = strlen((const char*) _kpsaID); int ret; mbedtls_ssl_set_hs_psk(_ssl, _kpsa, kpsa_len); if( (ret = mbedtls_ssl_conf_psk(_ssl_conf, _kpsa, kpsa_len , _kpsaID, kpsaID_len)) != 0){ print_mbedtls_error("mbedtls_psk_error", ret); // return NSAPI_ERROR_PARAMETER; return -1; } pc.printf("Ok.\n"); return 0; } int TLSSocketWrapper::set_client2_kpsa_kpsaID_cipher(){ const unsigned char _kpsa[5] = { 0x05, 0x04, 0x03, 0x02, 0x01 }; const unsigned char *_kpsaID = "AE456-LOCK@in.provider.com"; // 15 Bytes PSK-ID int kpsa_len = strlen((const char*) _kpsa); int kpsaID_len = strlen((const char*) _kpsaID); int ret; mbedtls_ssl_set_hs_psk(_ssl, _kpsa, kpsa_len); if( (ret = mbedtls_ssl_conf_psk(_ssl_conf, _kpsa, kpsa_len , _kpsaID, kpsaID_len)) != 0){ print_mbedtls_error("mbedtls_psk_error", ret); // return NSAPI_ERROR_PARAMETER; return -1; } pc.printf("Ok.\n"); return 0; } nsapi_error_t TLSSocketWrapper::do_handshake() { nsapi_error_t _error; const char DRBG_PERS[] = "mbed TLS client"; const int *cipherArray; cipherArray = mbedtls_ssl_list_ciphersuites(); pc.printf("[+] The allowed ciphersuites are: \n"); int i = 0; while (cipherArray[i] != 0) { pc.printf("[.] cipherArray[%d] = %d\n", i, cipherArray[i]); i++; } if (!_transport) { pc.printf("[-] transport/socket not available\n"); return NSAPI_ERROR_NO_SOCKET; } if (!is_tls_allocated()) { pc.printf("[-] no tls allocated\n"); return NSAPI_ERROR_NO_SOCKET; } _transport->set_blocking(false); /* * Initialize TLS-related stuf. */ int ret; if ((ret = mbedtls_ctr_drbg_seed(_ctr_drbg, mbedtls_entropy_func, _entropy, (const unsigned char *) DRBG_PERS, sizeof (DRBG_PERS))) != 0) { print_mbedtls_error("mbedtls_crt_drbg_init", ret); _error = ret; return _error; } pc.printf("[+] Configuring a dtls-client session initiation ... "); mbedtls_ssl_conf_endpoint(_ssl_conf, MBEDTLS_SSL_IS_CLIENT); mbedtls_ssl_conf_transport(_ssl_conf, MBEDTLS_SSL_TRANSPORT_DATAGRAM); tr_info("mbedtls_ssl_config_defaults()"); if ((ret = mbedtls_ssl_config_defaults(_ssl_conf, MBEDTLS_SSL_IS_CLIENT, MBEDTLS_SSL_TRANSPORT_DATAGRAM, MBEDTLS_SSL_PRESET_DEFAULT)) != 0) { print_mbedtls_error("mbedtls_ssl_config_defaults", ret); _error = ret; return _error; } tr_info("mbedtls_ssl_conf_ca_chain()"); mbedtls_ssl_conf_ca_chain(_ssl_conf, _cacert, NULL); tr_info("mbedtls_ssl_conf_rng()"); mbedtls_ssl_conf_rng(_ssl_conf, mbedtls_ctr_drbg_random, _ctr_drbg); pc.printf("ok\n"); /* It is possible to disable authentication by passing MBEDTLS_SSL_VERIFY_NONE in the call to mbedtls_ssl_conf_authmode() */ pc.printf("[+] Configuring the Session Information ... "); tr_info("mbedtls_ssl_conf_authmode()"); mbedtls_ssl_conf_authmode(_ssl_conf, MBEDTLS_SSL_VERIFY_NONE); mbedtls_ssl_conf_verify(_ssl_conf, my_verify, NULL); mbedtls_ssl_conf_dbg(_ssl_conf, my_debug, NULL); mbedtls_debug_set_threshold(3); /* configure the timers for retransmission of lost handshake messages 1,000 milli-sec minimum time to 6,000 milli-sec maximum delay */ mbedtls_ssl_conf_handshake_timeout(_ssl_conf, 1000, 6000); /* Anti-Replay Protection */ mbedtls_ssl_conf_dtls_anti_replay(_ssl_conf, MBEDTLS_SSL_ANTI_REPLAY_ENABLED); /* Bad Mac Limit for 10 Packets */ mbedtls_ssl_conf_dtls_badmac_limit(_ssl_conf, 10); /* Set the limit for the Maximum Transmission Unit for DTLS Payload {1500 Bits Set} */ mbedtls_ssl_set_mtu( _ssl , 1500 ); tr_info("mbedtls_ssl_setup()"); if ((ret = mbedtls_ssl_setup(_ssl, _ssl_conf)) != 0) { print_mbedtls_error("mbedtls_ssl_setup", ret); _error = ret; return _error; } pc.printf("ok\n"); pc.printf("[+] Configuring the Bio ... "); mbedtls_ssl_set_bio(_ssl, this, ssl_send, ssl_recv, NULL ); pc.printf("ok\n"); if(_client_auth) { pc.printf("[+] Configuring Client's pvtKey & certKey ... "); if((ret = mbedtls_ssl_conf_own_cert(_ssl_conf, _clicert, _pkctx)) != 0) { print_mbedtls_error("mbedtls_ssl_conf_own_cert", ret); _error = ret; return _error; } pc.printf("ok\n"); } pc.printf("[+] Timing Call-Back Setting ... "); mbedtls_ssl_set_timer_cb(_ssl, _ssl_timer, mbedtls_timing_set_delay, mbedtls_timing_get_delay); pc.printf("ok\n"); /* Start the handshake, the rest will be done in onReceive() */ //uint32_t init, final, TCPH, TTPH; pc.printf("[+] DTLS Handshake Connecting \n"); //init = osKernelGetTickCount(); if ((ret = mbedtls_ssl_handshake(_ssl)) != 0) { pc.printf("[-] mbedtls_ssl_handshake error %d\n", ret); return ret; } else { //final = osKernelGetTickCount(); pc.printf("[+] DTLS Hanshake Connected \n"); } //TCPH = final - init; //TTPH = TCPH/osKernelGetTickFreq(); //pc.printf("\nTCPH: %d\n", TCPH); //pc.printf("\nTTPH: %d\n", TTPH); //pc.printf("\nTickFreq: %d\n", osKernelGetTickFreq()); /* It also means the handshake is done, time to print info */ tr_info("[+] TLS connection to %s established\r\n", _ssl->hostname); // Prints the server certificate and verify it. const size_t buf_size = 1024; char* buf = new char[buf_size]; mbedtls_x509_crt_info(buf, buf_size, "\r ", mbedtls_ssl_get_peer_cert(_ssl)); tr_debug("[+] Server certificate:\r\n%s\r\n", buf); uint32_t flags = mbedtls_ssl_get_verify_result(_ssl); if( flags != 0 ) { // Verification failed. mbedtls_x509_crt_verify_info(buf, buf_size, "\r ! ", flags); tr_error("[+] Certificate verification failed:\r\n%s", buf); } else { // Verification succeeded. tr_info("[+] Certificate verification passed"); } delete[] buf; _handshake_completed = true; return 0; } nsapi_error_t TLSSocketWrapper::send(const void *data, nsapi_size_t size) { int ret; if (!is_tls_allocated()) { return NSAPI_ERROR_NO_SOCKET; } tr_debug("send %d", size); //uint32_t init, final, TCPH, TTPH; //init = osKernelGetTickCount(); ret = mbedtls_ssl_write(_ssl, (const unsigned char *) data, size); //final = osKernelGetTickCount(); /*TCPH = final - init; TTPH = TCPH/osKernelGetTickFreq(); pc.printf("\nTCPH: %d\n", TCPH); pc.printf("\nTTPH: %d\n", TTPH); pc.printf("\nTickFreq: %d\n", osKernelGetTickFreq()); */ if (ret == MBEDTLS_ERR_SSL_WANT_WRITE || ret == MBEDTLS_ERR_SSL_WANT_READ) { // translate to socket error return NSAPI_ERROR_WOULD_BLOCK; } if (ret < 0) { print_mbedtls_error("mbedtls_ssl_write", ret); } return ret; // Assume "non negative errorcode" to be propagated from Socket layer } nsapi_size_or_error_t TLSSocketWrapper::sendto(const SocketAddress &, const void *data, nsapi_size_t size) { // Ignore the SocketAddress return send(data, size); } nsapi_size_or_error_t TLSSocketWrapper::recv(void *data, nsapi_size_t size) { int ret; if (!is_tls_allocated()) { return NSAPI_ERROR_NO_SOCKET; } ret = mbedtls_ssl_read(_ssl, (unsigned char *) data, size); if (ret == MBEDTLS_ERR_SSL_WANT_WRITE || ret == MBEDTLS_ERR_SSL_WANT_READ) { // translate to socket error return NSAPI_ERROR_WOULD_BLOCK; } else if (ret == MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY) { /* MBEDTLS_ERR_SSL_PEER_CLOSE_NOTIFY is not considered as error. * Just ignre here. Once connection is closed, mbedtls_ssl_read() * will return 0. */ return 0; } else if (ret < 0) { print_mbedtls_error("mbedtls_ssl_read", ret); // TODO: Should I translate SSL errors to some socket error? } return ret; } nsapi_size_or_error_t TLSSocketWrapper::recvfrom(SocketAddress *address, void *data, nsapi_size_t size) { //TODO: Need Socket::getpeername() to get address return recv(data, size); } void TLSSocketWrapper::print_mbedtls_error(const char *name, int err) { char *buf = new char[128]; mbedtls_strerror(err, buf, 128); tr_err("%s() failed: -0x%04x (%d): %s", name, -err, err, buf); delete[] buf; } #if MBED_CONF_TLS_SOCKET_DEBUG_LEVEL > 0 void TLSSocketWrapper::my_debug(void *ctx, int level, const char *file, int line, const char *str) { const char *p, *basename; (void) ctx; /* Extract basename from file */ for(p = basename = file; *p != '\0'; p++) { if(*p == '/' || *p == '\\') { basename = p + 1; } } tr_debug("%s:%04d: |%d| %s", basename, line, level, str); } int TLSSocketWrapper::my_verify(void *data, mbedtls_x509_crt *crt, int depth, uint32_t *flags) { const uint32_t buf_size = 1024; char *buf = new char[buf_size]; (void) data; tr_debug("\nVerifying certificate at depth %d:\n", depth); mbedtls_x509_crt_info(buf, buf_size - 1, " ", crt); tr_debug("%s", buf); if (*flags == 0) tr_info("No verification issue for this certificate\n"); else { mbedtls_x509_crt_verify_info(buf, buf_size, " ! ", *flags); tr_info("%s\n", buf); } delete[] buf; return 0; } #endif /* MBED_CONF_TLS_SOCKET_DEBUG_LEVEL > 0 */ int TLSSocketWrapper::ssl_recv(void *ctx, unsigned char *buf, size_t len) { int recv; TLSSocketWrapper *my = static_cast<TLSSocketWrapper *>(ctx); if (!my->_transport) { return NSAPI_ERROR_NO_SOCKET; } recv = my->_transport->recv(buf, len); if (NSAPI_ERROR_WOULD_BLOCK == recv) { return MBEDTLS_ERR_SSL_WANT_READ; } else if(recv < 0) { tr_error("Socket recv error %d", recv); } // Propagate also Socket errors to SSL, it allows negative error codes to be returned here. return recv; } int TLSSocketWrapper::ssl_send(void *ctx, const unsigned char *buf, size_t len) { int size = -1; TLSSocketWrapper *my = static_cast<TLSSocketWrapper *>(ctx); if (!my->_transport) { return NSAPI_ERROR_NO_SOCKET; } size = my->_transport->send(buf, len); if (NSAPI_ERROR_WOULD_BLOCK == size) { return MBEDTLS_ERR_SSL_WANT_WRITE; } else if(size < 0){ tr_error("Socket send error %d", size); } // Propagate also Socket errors to SSL, it allows negative error codes to be returned here. return size; } void TLSSocketWrapper::tls_init() { _entropy = new mbedtls_entropy_context; _ctr_drbg = new mbedtls_ctr_drbg_context; _cacert = new mbedtls_x509_crt; _clicert = new mbedtls_x509_crt; _pkctx = new mbedtls_pk_context; _ssl = new mbedtls_ssl_context; _ssl_conf = new mbedtls_ssl_config; _ssl_timer = new mbedtls_timing_delay_context; mbedtls_entropy_init(_entropy); mbedtls_ctr_drbg_init(_ctr_drbg); mbedtls_x509_crt_init(_cacert); mbedtls_x509_crt_init(_clicert); mbedtls_pk_init(_pkctx); mbedtls_ssl_init(_ssl); mbedtls_ssl_config_init(_ssl_conf); } void TLSSocketWrapper::tls_free() { mbedtls_entropy_free(_entropy); mbedtls_ctr_drbg_free(_ctr_drbg); mbedtls_x509_crt_free(_cacert); mbedtls_x509_crt_free(_clicert); mbedtls_pk_free(_pkctx); mbedtls_ssl_free(_ssl); mbedtls_ssl_config_free(_ssl_conf); delete _entropy; delete _ctr_drbg; delete _cacert; delete _clicert; delete _pkctx; delete _ssl; delete _ssl_conf; delete _ssl_timer; _ssl = NULL; // Marks that TLS context is freed } bool TLSSocketWrapper::is_tls_allocated() { return _ssl != NULL; } nsapi_error_t TLSSocketWrapper::close() { if (!_transport) { return NSAPI_ERROR_NO_SOCKET; } if (!is_tls_allocated()) { return NSAPI_ERROR_NO_SOCKET; } tr_info("Closing TLS"); int ret = 0; if (_handshake_completed) { _transport->set_blocking(true); ret = mbedtls_ssl_close_notify(_ssl); if (ret) { print_mbedtls_error("mbedtls_ssl_close_notify", ret); } _handshake_completed = false; } if (!_keep_transport_open) { int ret2 = _transport->close(); if (!ret) { ret = ret2; } } _transport = NULL; tls_free(); return ret; } nsapi_error_t TLSSocketWrapper::connect(const SocketAddress &address) { pc.printf("Hello from TLSSocketWrapper::connect().\n"); if (!_transport) { pc.printf("transport not available\n"); return NSAPI_ERROR_NO_SOCKET; } //TODO: We could initiate the hanshake here, if there would be separate function call to set the target hostname nsapi_error_t ret = _transport->connect(address); if (ret) { pc.printf("transport->connect() failed, %d\n", ret); pc.printf("error return from TLSSocketWrapper::connect %d\n", ret); return ret; } return do_handshake(); } nsapi_error_t TLSSocketWrapper::bind(const SocketAddress &address) { if (!_transport) { return NSAPI_ERROR_NO_SOCKET; } return _transport->bind(address); } void TLSSocketWrapper::set_blocking(bool blocking) { if (!_transport) { return; } _transport->set_blocking(blocking); } void TLSSocketWrapper::set_timeout(int timeout) { if (!_transport) { return; } _transport->set_timeout(timeout); } void TLSSocketWrapper::sigio(mbed::Callback<void()> func) { if (!_transport) { return; } // Allow sigio() to propagate to upper level and handle errors on recv() and send() _transport->sigio(func); } nsapi_error_t TLSSocketWrapper::setsockopt(int level, int optname, const void *optval, unsigned optlen) { if (!_transport) { return NSAPI_ERROR_NO_SOCKET; } return _transport->setsockopt(level, optname, optval, optlen); } nsapi_error_t TLSSocketWrapper::getsockopt(int level, int optname, void *optval, unsigned *optlen) { if (!_transport) { return NSAPI_ERROR_NO_SOCKET; } return _transport->getsockopt(level, optname, optval, optlen); } Socket *TLSSocketWrapper::accept(nsapi_error_t *err) { if (err) { *err = NSAPI_ERROR_UNSUPPORTED; } return NULL; } nsapi_error_t TLSSocketWrapper::listen(int) { return NSAPI_ERROR_UNSUPPORTED; }