test
Dependencies: mbed
zmu9250.h
- Committer:
- siwakon
- Date:
- 2016-12-05
- Revision:
- 0:dd400e4fe461
File content as of revision 0:dd400e4fe461:
#include "mbed.h" #include "MPU9250.h" #include "math.h" #include "kalman.h" Serial aa(USBTX,USBRX); class ZMU9250 { public: ZMU9250() { //Set up I2C i2c.frequency(400000); // use fast (400 kHz) I2C this->t.start(); // Read the WHO_AM_I register, this is a good test of communication uint8_t whoami = this->mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 if ((whoami == 0x73)||(whoami == 0x71)) // WHO_AM_I should always be 0x68 { wait(1); this->mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration this->mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values this->mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers wait(2); this->mpu9250.initMPU9250(); this->mpu9250.initAK8963(magCalibration); wait(1); } else { while(1) ; // Loop forever if communication doesn't happen } this->mpu9250.getAres(); // Get accelerometer sensitivity this->mpu9250.getGres(); // Get gyro sensitivity this->mpu9250.getMres(); // Get magnetometer sensitivity //magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated //magbias[1] = +120.; // User environmental x-axis correction in milliGauss //magbias[2] = +125.; // User environmental x-axis correction in milliGauss magbias[0] = +470; // User environmental x-axis correction in milliGauss, should be automatically calculated magbias[1] = +120; // User environmental x-axis correction in milliGauss magbias[2] = +125; // User environmental x-axis correction in milliGauss } void Update() { if(this->mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt this->mpu9250.readAccelData(accelCount); // Read the x/y/z adc values // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes - accelBias[1]; az = (float)accelCount[2]*aRes - accelBias[2]; this->mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values // Calculate the gyro value into actual degrees per second gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set gy = (float)gyroCount[1]*gRes - gyroBias[1]; gz = (float)gyroCount[2]*gRes - gyroBias[2]; this->mpu9250.readMagData(magCount); // Read the x/y/z adc values // Calculate the magnetometer values in milliGauss // Include factory calibration per data sheet and user environmental corrections mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]+360.0f; // get actual magnetometer value, this depends on scale being set my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]-210.0f; mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; //aa.printf("x %f\ty %f\tz %f\n",mx,my,mz); } // end if one Now = this->t.read_us(); deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update lastUpdate = Now; this->sum += deltat; sumCount++; this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); // Pass gyro rate as rad/s /*if((rand()%20)>=0) { this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); }else { //this->mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); this->mpu9250.Mad_Update(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); }*/ // Serial print and/or display at 0.5 s rate independent of data rates delt_t = this->t.read_ms() - count; if (delt_t > 10) { // update LCD once per half-second independent of read rate tempCount = this->mpu9250.readTempData(); // Read the adc values temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); //yaw = atan2(2.0f * (q[0] * q[2] + q[0] * q[3]), 1 - 2 * ( q[2] * q[2] + q[3] * q[3])); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); //pitch = atan2(2.0f * (q[1] * q[3] - q[0] * q[2]),q[0]*q[0]-q[1]*q[1]+q[2]*q[2]-q[3]*q[3]); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); //pitch = atan2(sin(roll)*(q[1]*q[3]-q[0]*q[2]),q[1]*q[2]+q[0]*q[3]); pitch *= 180.0f / PI; yaw *= 180.0f / PI; //yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 yaw -= 0.35f; roll *= 180.0f / PI; this->roll_x = roll; this->pitch_y = pitch; this->yaw_z = yaw;//(this->kal.getAngle(yaw*PI/180.0f,0.00,delt_t)); count = this->t.read_ms(); if(count > 1<<21) { this->t.start(); // start the timer over again if ~30 minutes has passed count = 0; deltat= 0; lastUpdate = this->t.read_us(); } // end if three. this->sum = 0; sumCount = 0; } // end if two. } float Roll() { return roll_x; } float Pitch() { return pitch_y; } float Yaw() { return yaw_z; } private: float sum; uint32_t sumCount; char buffer[14]; int roll_x; kalman kal(); int pitch_y; int yaw_z; MPU9250 mpu9250; Timer t; };