hahaha
Dependencies: mbed
Diff: zmu9250.h
- Revision:
- 0:a291977ec0b1
- Child:
- 1:d8ce226c8c2e
diff -r 000000000000 -r a291977ec0b1 zmu9250.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/zmu9250.h Mon Dec 05 18:31:43 2016 +0000 @@ -0,0 +1,160 @@ +#include "mbed.h" +#include "MPU9250.h" +#include "math.h" + +Serial aa(USBTX,USBRX); + + +class ZMU9250 +{ + public: + ZMU9250() + { + + //Set up I2C + aa.printf("null\n"); + i2c.frequency(400000); // use fast (400 kHz) I2C + this->t.start(); + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = this->mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 + if (whoami == 0x73) // WHO_AM_I should always be 0x68 + { + wait(1); + this->mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + this->mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values + this->mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + wait(2); + this->mpu9250.initMPU9250(); + this->mpu9250.initAK8963(magCalibration); + wait(1); + + } + else + { + aa.printf("forever\n"); + while(1) ; // Loop forever if communication doesn't happen + } + aa.printf("first\n"); + this->mpu9250.getAres(); // Get accelerometer sensitivity + this->mpu9250.getGres(); // Get gyro sensitivity + this->mpu9250.getMres(); // Get magnetometer sensitivity + aa.printf("second\n"); + //magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated + //magbias[1] = +120.; // User environmental x-axis correction in milliGauss + //magbias[2] = +125.; // User environmental x-axis correction in milliGauss + magbias[0] = +470; // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = +120; // User environmental x-axis correction in milliGauss + magbias[2] = +125; // User environmental x-axis correction in milliGauss + } + + void Update() + { + if(this->mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + this->mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + this->mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + this->mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + aa.printf("ten\n\r"); + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]+360.0f; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]-210.0f; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + aa.printf("eleven\n\r"); + //aa.printf("x %f\ty %f\tz %f\n",mx,my,mz); + + + } // end if one + Now = this->t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + this->sum += deltat; + sumCount++; + // Pass gyro rate as rad/s + if((rand()%20)>=0) + { + this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + }else + { + //this->mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + this->mpu9250.Mad_Update(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); + } + + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = this->t.read_ms() - count; + if (delt_t > 10) { // update LCD once per half-second independent of read rate + tempCount = this->mpu9250.readTempData(); // Read the adc values + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + //yaw = atan2(2.0f * (q[0] * q[2] + q[0] * q[3]), 1 - 2 * ( q[2] * q[2] + q[3] * q[3])); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + //yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + yaw -= 0.35f; + roll *= 180.0f / PI; + this->roll_x = roll; + this->pitch_y = pitch; + this->yaw_z = yaw;//(this->kal.getAngle(yaw*PI/180.0f,0.00,delt_t)); + count = this->t.read_ms(); + if(count > 1<<21) { + this->t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = this->t.read_us(); + } // end if three. + this->sum = 0; + sumCount = 0; + } // end if two. + } + + + float Roll() + { + return roll_x; + } + + float Pitch() + { + return pitch_y; + } + + float Yaw() + { + return yaw_z; + } + + + private: + float sum; + uint32_t sumCount; + char buffer[14]; + int roll_x; + int pitch_y; + int yaw_z; + MPU9250 mpu9250; + Timer t; + + +}; + +