hahaha
Dependencies: mbed
zmu9250.h@1:d8ce226c8c2e, 2016-12-06 (annotated)
- Committer:
- arthicha
- Date:
- Tue Dec 06 06:11:54 2016 +0000
- Revision:
- 1:d8ce226c8c2e
- Parent:
- 0:a291977ec0b1
- Child:
- 2:ce3ee4bc8cf7
;UUpdate;
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
arthicha | 1:d8ce226c8c2e | 1 | #ifndef ZMU9250_H_ |
arthicha | 1:d8ce226c8c2e | 2 | #define ZMU9050_H_ |
arthicha | 1:d8ce226c8c2e | 3 | |
arthicha | 1:d8ce226c8c2e | 4 | #endif |
arthicha | 1:d8ce226c8c2e | 5 | |
arthicha | 0:a291977ec0b1 | 6 | #include "mbed.h" |
arthicha | 0:a291977ec0b1 | 7 | #include "MPU9250.h" |
arthicha | 0:a291977ec0b1 | 8 | #include "math.h" |
arthicha | 1:d8ce226c8c2e | 9 | #include "kalman.h" |
arthicha | 0:a291977ec0b1 | 10 | |
arthicha | 0:a291977ec0b1 | 11 | Serial aa(USBTX,USBRX); |
arthicha | 1:d8ce226c8c2e | 12 | class ZMU9250{ |
arthicha | 1:d8ce226c8c2e | 13 | |
arthicha | 0:a291977ec0b1 | 14 | public: |
arthicha | 1:d8ce226c8c2e | 15 | ZMU9250::ZMU9250() |
arthicha | 0:a291977ec0b1 | 16 | { |
arthicha | 0:a291977ec0b1 | 17 | |
arthicha | 0:a291977ec0b1 | 18 | //Set up I2C |
arthicha | 1:d8ce226c8c2e | 19 | //aa.printf("null\n"); |
arthicha | 0:a291977ec0b1 | 20 | i2c.frequency(400000); // use fast (400 kHz) I2C |
arthicha | 0:a291977ec0b1 | 21 | this->t.start(); |
arthicha | 0:a291977ec0b1 | 22 | |
arthicha | 0:a291977ec0b1 | 23 | // Read the WHO_AM_I register, this is a good test of communication |
arthicha | 1:d8ce226c8c2e | 24 | |
arthicha | 0:a291977ec0b1 | 25 | uint8_t whoami = this->mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 |
arthicha | 1:d8ce226c8c2e | 26 | aa.printf("whoami = %d\n\r ",whoami); |
arthicha | 1:d8ce226c8c2e | 27 | if ((whoami == 0x71))//||(whoami == 0x71)||(true)) // WHO_AM_I should always be 0x68 |
arthicha | 0:a291977ec0b1 | 28 | { |
arthicha | 0:a291977ec0b1 | 29 | wait(1); |
arthicha | 0:a291977ec0b1 | 30 | this->mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration |
arthicha | 0:a291977ec0b1 | 31 | this->mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values |
arthicha | 0:a291977ec0b1 | 32 | this->mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
arthicha | 0:a291977ec0b1 | 33 | wait(2); |
arthicha | 0:a291977ec0b1 | 34 | this->mpu9250.initMPU9250(); |
arthicha | 0:a291977ec0b1 | 35 | this->mpu9250.initAK8963(magCalibration); |
arthicha | 0:a291977ec0b1 | 36 | wait(1); |
arthicha | 0:a291977ec0b1 | 37 | |
arthicha | 0:a291977ec0b1 | 38 | } |
arthicha | 0:a291977ec0b1 | 39 | else |
arthicha | 0:a291977ec0b1 | 40 | { |
arthicha | 1:d8ce226c8c2e | 41 | //aa.printf("forever\n"); |
arthicha | 0:a291977ec0b1 | 42 | while(1) ; // Loop forever if communication doesn't happen |
arthicha | 0:a291977ec0b1 | 43 | } |
arthicha | 1:d8ce226c8c2e | 44 | //aa.printf("first\n"); |
arthicha | 0:a291977ec0b1 | 45 | this->mpu9250.getAres(); // Get accelerometer sensitivity |
arthicha | 0:a291977ec0b1 | 46 | this->mpu9250.getGres(); // Get gyro sensitivity |
arthicha | 0:a291977ec0b1 | 47 | this->mpu9250.getMres(); // Get magnetometer sensitivity |
arthicha | 1:d8ce226c8c2e | 48 | //aa.printf("second\n"); |
arthicha | 0:a291977ec0b1 | 49 | //magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated |
arthicha | 0:a291977ec0b1 | 50 | //magbias[1] = +120.; // User environmental x-axis correction in milliGauss |
arthicha | 0:a291977ec0b1 | 51 | //magbias[2] = +125.; // User environmental x-axis correction in milliGauss |
arthicha | 0:a291977ec0b1 | 52 | magbias[0] = +470; // User environmental x-axis correction in milliGauss, should be automatically calculated |
arthicha | 0:a291977ec0b1 | 53 | magbias[1] = +120; // User environmental x-axis correction in milliGauss |
arthicha | 0:a291977ec0b1 | 54 | magbias[2] = +125; // User environmental x-axis correction in milliGauss |
arthicha | 0:a291977ec0b1 | 55 | } |
arthicha | 0:a291977ec0b1 | 56 | |
arthicha | 1:d8ce226c8c2e | 57 | void ZMU9250::Update() |
arthicha | 0:a291977ec0b1 | 58 | { |
arthicha | 1:d8ce226c8c2e | 59 | // aa.printf("hellow\n\r"); |
arthicha | 0:a291977ec0b1 | 60 | if(this->mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt |
arthicha | 0:a291977ec0b1 | 61 | this->mpu9250.readAccelData(accelCount); // Read the x/y/z adc values |
arthicha | 0:a291977ec0b1 | 62 | // Now we'll calculate the accleration value into actual g's |
arthicha | 0:a291977ec0b1 | 63 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set |
arthicha | 0:a291977ec0b1 | 64 | ay = (float)accelCount[1]*aRes - accelBias[1]; |
arthicha | 0:a291977ec0b1 | 65 | az = (float)accelCount[2]*aRes - accelBias[2]; |
arthicha | 0:a291977ec0b1 | 66 | this->mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values |
arthicha | 0:a291977ec0b1 | 67 | // Calculate the gyro value into actual degrees per second |
arthicha | 0:a291977ec0b1 | 68 | gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set |
arthicha | 0:a291977ec0b1 | 69 | gy = (float)gyroCount[1]*gRes - gyroBias[1]; |
arthicha | 0:a291977ec0b1 | 70 | gz = (float)gyroCount[2]*gRes - gyroBias[2]; |
arthicha | 0:a291977ec0b1 | 71 | this->mpu9250.readMagData(magCount); // Read the x/y/z adc values |
arthicha | 0:a291977ec0b1 | 72 | // Calculate the magnetometer values in milliGauss |
arthicha | 0:a291977ec0b1 | 73 | // Include factory calibration per data sheet and user environmental corrections |
arthicha | 1:d8ce226c8c2e | 74 | //aa.printf("ten\n\r"); |
arthicha | 0:a291977ec0b1 | 75 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]+360.0f; // get actual magnetometer value, this depends on scale being set |
arthicha | 0:a291977ec0b1 | 76 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]-210.0f; |
arthicha | 0:a291977ec0b1 | 77 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; |
arthicha | 1:d8ce226c8c2e | 78 | //aa.printf("eleven\n\r"); |
arthicha | 1:d8ce226c8c2e | 79 | //aa.printf("x %f\ty %f\tz %f\n\r",gyroCount[0],gy,gz); |
arthicha | 0:a291977ec0b1 | 80 | |
arthicha | 0:a291977ec0b1 | 81 | |
arthicha | 0:a291977ec0b1 | 82 | } // end if one |
arthicha | 0:a291977ec0b1 | 83 | Now = this->t.read_us(); |
arthicha | 0:a291977ec0b1 | 84 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update |
arthicha | 0:a291977ec0b1 | 85 | lastUpdate = Now; |
arthicha | 0:a291977ec0b1 | 86 | this->sum += deltat; |
arthicha | 0:a291977ec0b1 | 87 | sumCount++; |
arthicha | 0:a291977ec0b1 | 88 | // Pass gyro rate as rad/s |
arthicha | 1:d8ce226c8c2e | 89 | this->mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
arthicha | 1:d8ce226c8c2e | 90 | //this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
arthicha | 1:d8ce226c8c2e | 91 | /*if((rand()%20)>=0) |
arthicha | 0:a291977ec0b1 | 92 | { |
arthicha | 0:a291977ec0b1 | 93 | this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
arthicha | 0:a291977ec0b1 | 94 | }else |
arthicha | 0:a291977ec0b1 | 95 | { |
arthicha | 0:a291977ec0b1 | 96 | //this->mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
arthicha | 0:a291977ec0b1 | 97 | this->mpu9250.Mad_Update(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f); |
arthicha | 1:d8ce226c8c2e | 98 | }*/ |
arthicha | 0:a291977ec0b1 | 99 | |
arthicha | 0:a291977ec0b1 | 100 | |
arthicha | 0:a291977ec0b1 | 101 | // Serial print and/or display at 0.5 s rate independent of data rates |
arthicha | 0:a291977ec0b1 | 102 | delt_t = this->t.read_ms() - count; |
arthicha | 0:a291977ec0b1 | 103 | if (delt_t > 10) { // update LCD once per half-second independent of read rate |
arthicha | 0:a291977ec0b1 | 104 | tempCount = this->mpu9250.readTempData(); // Read the adc values |
arthicha | 0:a291977ec0b1 | 105 | temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade |
arthicha | 0:a291977ec0b1 | 106 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. |
arthicha | 0:a291977ec0b1 | 107 | // In this coordinate system, the positive z-axis is down toward Earth. |
arthicha | 0:a291977ec0b1 | 108 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. |
arthicha | 0:a291977ec0b1 | 109 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. |
arthicha | 0:a291977ec0b1 | 110 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. |
arthicha | 0:a291977ec0b1 | 111 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. |
arthicha | 0:a291977ec0b1 | 112 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be |
arthicha | 0:a291977ec0b1 | 113 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. |
arthicha | 0:a291977ec0b1 | 114 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. |
arthicha | 0:a291977ec0b1 | 115 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); |
arthicha | 0:a291977ec0b1 | 116 | //yaw = atan2(2.0f * (q[0] * q[2] + q[0] * q[3]), 1 - 2 * ( q[2] * q[2] + q[3] * q[3])); |
arthicha | 0:a291977ec0b1 | 117 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); |
arthicha | 0:a291977ec0b1 | 118 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); |
arthicha | 0:a291977ec0b1 | 119 | pitch *= 180.0f / PI; |
arthicha | 0:a291977ec0b1 | 120 | yaw *= 180.0f / PI; |
arthicha | 0:a291977ec0b1 | 121 | //yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 |
arthicha | 0:a291977ec0b1 | 122 | yaw -= 0.35f; |
arthicha | 0:a291977ec0b1 | 123 | roll *= 180.0f / PI; |
arthicha | 0:a291977ec0b1 | 124 | this->roll_x = roll; |
arthicha | 0:a291977ec0b1 | 125 | this->pitch_y = pitch; |
arthicha | 0:a291977ec0b1 | 126 | this->yaw_z = yaw;//(this->kal.getAngle(yaw*PI/180.0f,0.00,delt_t)); |
arthicha | 0:a291977ec0b1 | 127 | count = this->t.read_ms(); |
arthicha | 0:a291977ec0b1 | 128 | if(count > 1<<21) { |
arthicha | 0:a291977ec0b1 | 129 | this->t.start(); // start the timer over again if ~30 minutes has passed |
arthicha | 0:a291977ec0b1 | 130 | count = 0; |
arthicha | 0:a291977ec0b1 | 131 | deltat= 0; |
arthicha | 0:a291977ec0b1 | 132 | lastUpdate = this->t.read_us(); |
arthicha | 0:a291977ec0b1 | 133 | } // end if three. |
arthicha | 0:a291977ec0b1 | 134 | this->sum = 0; |
arthicha | 0:a291977ec0b1 | 135 | sumCount = 0; |
arthicha | 0:a291977ec0b1 | 136 | } // end if two. |
arthicha | 0:a291977ec0b1 | 137 | } |
arthicha | 0:a291977ec0b1 | 138 | |
arthicha | 0:a291977ec0b1 | 139 | |
arthicha | 1:d8ce226c8c2e | 140 | float ZMU9250::Roll() |
arthicha | 0:a291977ec0b1 | 141 | { |
arthicha | 0:a291977ec0b1 | 142 | return roll_x; |
arthicha | 0:a291977ec0b1 | 143 | } |
arthicha | 0:a291977ec0b1 | 144 | |
arthicha | 1:d8ce226c8c2e | 145 | float ZMU9250::Pitch() |
arthicha | 0:a291977ec0b1 | 146 | { |
arthicha | 0:a291977ec0b1 | 147 | return pitch_y; |
arthicha | 0:a291977ec0b1 | 148 | } |
arthicha | 0:a291977ec0b1 | 149 | |
arthicha | 1:d8ce226c8c2e | 150 | float ZMU9250::Yaw() |
arthicha | 0:a291977ec0b1 | 151 | { |
arthicha | 0:a291977ec0b1 | 152 | return yaw_z; |
arthicha | 0:a291977ec0b1 | 153 | } |
arthicha | 0:a291977ec0b1 | 154 | |
arthicha | 0:a291977ec0b1 | 155 | |
arthicha | 0:a291977ec0b1 | 156 | private: |
arthicha | 0:a291977ec0b1 | 157 | float sum; |
arthicha | 0:a291977ec0b1 | 158 | uint32_t sumCount; |
arthicha | 0:a291977ec0b1 | 159 | char buffer[14]; |
arthicha | 0:a291977ec0b1 | 160 | int roll_x; |
arthicha | 1:d8ce226c8c2e | 161 | kalman kal(); |
arthicha | 0:a291977ec0b1 | 162 | int pitch_y; |
arthicha | 0:a291977ec0b1 | 163 | int yaw_z; |
arthicha | 0:a291977ec0b1 | 164 | MPU9250 mpu9250; |
arthicha | 0:a291977ec0b1 | 165 | Timer t; |
arthicha | 0:a291977ec0b1 | 166 | |
arthicha | 0:a291977ec0b1 | 167 | |
arthicha | 0:a291977ec0b1 | 168 | }; |
arthicha | 0:a291977ec0b1 | 169 | |
arthicha | 0:a291977ec0b1 | 170 | |
arthicha | 1:d8ce226c8c2e | 171 |