lib eeprom

Fork of eeprom by FRA221_2015

eeprom.cpp

Committer:
soulx
Date:
2015-10-26
Revision:
2:c648c5e93d5e
Parent:
0:80245aff63ce

File content as of revision 2:c648c5e93d5e:

/***********************************************************
Author: Bernard Borredon
Date: 27 december 2011
Version: 1.0
************************************************************/
#include "mbed.h"
#include "eeprom.h"

#define BIT_SET(x,n) (x=x | (0x01<<n))
#define BIT_TEST(x,n) (x & (0x01<<n))
#define BIT_CLEAR(x,n) (x=x & ~(0x01<<n))

EEPROM::EEPROM(PinName sda, PinName scl, uint8_t address, TypeEeprom type) : _i2c(sda, scl) 
{
  
  _errnum = EEPROM_NoError;
  _type = type;
  
  // Check address range
  _address = address;
  switch(type) {
                 case T24C01 :
                 case T24C02 :
                    if(address > 7) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = _address << 1;
                    _page_write = 8;
                    _page_number = 1;
                    break;
                 case T24C04 :
                    if(address > 7) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = (_address & 0xFE) << 1;
                    _page_write = 16;
                    _page_number = 2;
                    break;
                 case T24C08 :
                    if(address > 7) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = (_address & 0xFC) << 1;
                    _page_write = 16;
                    _page_number = 4;
                    break;
                 case T24C16 :
                    _address = 0;
                    _page_write = 16;
                    _page_number = 8;
                    break;
                  case T24C32 :
                  case T24C64 :
                  
                    if(address > 7) {
                      _errnum = EEPROM_BadAddress;
                    }
                    
                    _address = _address << 1;
                    
                    
                    _page_write = 32;
                    _page_number = 1;
                    break;
                  case T24C128 :
                  case T24C256 :
                    if(address > 3) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = _address << 1;
                    _page_write = 64;
                    _page_number = 1;
                    break;
                 case T24C512 :
                    if(address > 3) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = _address << 1;
                    _page_write = 128;
                    _page_number = 1;
                    break;
                 case T24C1024 :
                    if(address > 7) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = (_address & 0xFE) << 1;
                    _page_write = 128;
                    _page_number = 2;
                    break;
                 case T24C1025 :
                    if(address > 3) {
                      _errnum = EEPROM_BadAddress;
                    }
                    _address = _address << 1;
                    _page_write = 128;
                    _page_number = 2;
                    break;
  }
  
  // Size in bytes
  _size = _type;
  if(_type == T24C1025)
    _size = T24C1024;
  
  // Set I2C frequency
  _i2c.frequency(100000);
}

void EEPROM::write(uint16_t address, int8_t data)
{
  uint8_t page;
  uint8_t addr;
  uint8_t cmd[3];
  int len;
  int ack;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  // Compute page number
  page = 0;
  if(_type < T24C32)
    page = (uint8_t) (address / 256); 
  
  // Device address
  addr = EEPROM_Address | _address | (page << 1);
 
  if(_type < T24C32) {
    len = 2;
    
    // Word address 
    cmd[0] = (uint8_t) (address - page * 256);
  
    // Data
    cmd[1] = (uint8_t) data;
  }
  else {
    len = 3;
    
    // First word address (MSB)
    cmd[0] = (uint8_t) (address >> 8);
    
    // Second word address (LSB)
    cmd[1] = (uint8_t) address;
    
    // Data
    cmd[2] = (uint8_t) data;
  }
  
 // printf("len %d address %02x cmd[0] %02x cmd[1] %02x cmd[2] %02x\n",len,addr,cmd[0],cmd[1],cmd[2]);
 
  ack = _i2c.write((int)addr,(char *)cmd,len);
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
  // Wait end of write
  ready();

}

void EEPROM::write(uint16_t address, int8_t data[], uint16_t length)
{
  uint8_t page;
  uint8_t addr;
  uint8_t blocs,remain;
  uint8_t fpart,lpart;
  uint8_t i,j,ind;
  uint8_t cmd[129];
  int ack;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  // Check length
  if(!checkAddress(address + length - 1)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  // Compute blocs numbers
  blocs = length / _page_write;
  
  // Compute remaining bytes
  remain = length - blocs * _page_write;
  
  for(i = 0;i < blocs;i++) {
     // Compute page number
     page = 0;
     if(_type < T24C32)
       page = (uint8_t) (address / 256); 
  
     // Device address
     addr = EEPROM_Address | _address | (page << 1);
  
     if(_type < T24C32) {
       // Word address
       cmd[0] = (uint8_t) (address - page * 256);
     
       if((uint8_t) ((address + _page_write) / 256) == page) { // Data fit in the same page
         // Add data 
         for(j = 0;j < _page_write;j++)
            cmd[j + 1] = (uint8_t) data[i * _page_write + j];
    
         // Write data
         ack = _i2c.write((int)addr,(char *)cmd,_page_write + 1);
         if(ack != 0) {
           _errnum = EEPROM_I2cError;
           return;
         }
  
         // Wait end of write
         ready();
       
         // Increment address
         address += _page_write;
       }
       else { // Data on 2 pages. We must split the write
         // Number of bytes in current page
         fpart = (page + 1) * 256 - address;
       
         // Add data for current page
         for(j = 0;j < fpart;j++)
            cmd[j + 1] = (uint8_t) data[i * _page_write + j];
    
         // Write data for current page
         ack = _i2c.write((int)addr,(char *)cmd,fpart + 1);
         if(ack != 0) {
           _errnum = EEPROM_I2cError;
           return;
         }
  
         // Wait end of write
         ready();
       
         // Increment address
         address += fpart;
       
         if(page < _page_number - 1) {
           // Increment page
           page++;
       
           // Device address
           addr = EEPROM_Address | _address | (page << 1);
       
           // Word address
           cmd[0] = (uint8_t) (address - page * 256);
       
           // Data index
           ind = i * _page_write + fpart;
       
           // Number of bytes in next page
           lpart = _page_write - fpart;
       
           // Add data for next page
           for(j = 0;j < lpart;j++)
              cmd[j + 1] = (uint8_t) data[ind + j];
    
           // Write data for next page
           ack = _i2c.write((int)addr,(char *)cmd,lpart + 1);
           if(ack != 0) {
             _errnum = EEPROM_I2cError;
             return;
           }
  
           // Wait end of write
           ready();
       
           // Increment address
           address += lpart;
         }
       }
     }
     else {
       // First word address (MSB)
       cmd[0] = (uint8_t) (address >> 8);
       
       // Second word address (LSB)
       cmd[1] = (uint8_t) address;
       
       // Add data 
       for(j = 0;j < _page_write;j++)
          cmd[j + 2] = (uint8_t) data[i * _page_write + j];
    
       // Write data
       ack = _i2c.write((int)addr,(char *)cmd,_page_write + 2);
       if(ack != 0) {
         _errnum = EEPROM_I2cError;
         return;
       }
  
       // Wait end of write
       ready();
       
       // Increment address
       address += _page_write;
     }
  }
  
  // Compute page number
  page = 0;
  if(_type < T24C32)
    page = (uint8_t) (address / 256); 
  
  // Device address
  addr = EEPROM_Address | _address | (page << 1);
  
  if(_type < T24C32) {
    // Word address
    cmd[0] = (uint8_t) (address - page * 256);
  
    if((uint8_t) ((address + remain) / 256) == page) { // Data fit in the same page
      // Add data for the current page
      for(j = 0;j < remain;j++)
         cmd[j + 1] = (uint8_t) data[blocs * _page_write + j];
    
      // Write data for the current page
      ack = _i2c.write((int)addr,(char *)cmd,remain + 1);
      if(ack != 0) {
        _errnum = EEPROM_I2cError;
        return;
      }
  
      // Wait end of write
      ready();
    }
    else { // Data on 2 pages. We must split the write
      // Number of bytes in current page
      fpart = (page + 1) * 256 - address;
    
      // Add data for current page
      for(j = 0;j < fpart;j++)
         cmd[j + 1] = (uint8_t) data[blocs * _page_write + j];
    
      // Write data for current page
      ack = _i2c.write((int)addr,(char *)cmd,fpart + 1);
      if(ack != 0) {
        _errnum = EEPROM_I2cError;
        return;
      }
  
      // Wait end of write
      ready();
    
      // Increment address
      address += fpart;
       
      if(page < _page_number - 1) {
        // Increment page
        page++;
    
        // Device address
        addr = EEPROM_Address | _address | (page << 1);
    
        // Word address
        cmd[0] = (uint8_t) (address - page * 256);
    
        // Data index
        ind = blocs * _page_write + fpart;
    
        // Number of bytes in next page
        lpart = remain - fpart;
    
        // Add data for next page
        for(j = 0;j < lpart;j++)
           cmd[j + 1] = (uint8_t) data[ind + j];
    
        // Write data for next page
        ack = _i2c.write((int)addr,(char *)cmd,lpart + 1);
        if(ack != 0) {
          _errnum = EEPROM_I2cError;
          return;
        }
        
        // Wait end of write
        ready();
      }
    }
  }
  else {
    // Fist word address (MSB)
    cmd[0] = (uint8_t) (address >> 8);
    
    // Second word address (LSB)
    cmd[1] = (uint8_t) address;

    // Add data for the current page
    for(j = 0;j < remain;j++)
       cmd[j + 2] = (uint8_t) data[blocs * _page_write + j];
    
    // Write data for the current page
    ack = _i2c.write((int)addr,(char *)cmd,remain + 2);
    if(ack != 0) {
      _errnum = EEPROM_I2cError;
      return;
    }
  
    // Wait end of write
    ready();
  }
  
}

void EEPROM::write(uint16_t address, int16_t data)
{
  int8_t cmd[2];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 1)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  memcpy(cmd,&data,2);
  
  write(address,cmd,2);
  
}

void EEPROM::write(uint16_t address, int32_t data)
{
  int8_t cmd[4];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 3)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  memcpy(cmd,&data,4);
  
  write(address,cmd,4);

}

void EEPROM::write(uint16_t address, float data)
{
  int8_t cmd[4];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 3)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  memcpy(cmd,&data,4);
  
  write(address,cmd,4);
  
}

void EEPROM::write(uint16_t address, void *data, uint16_t size)
{
  int8_t *cmd = NULL;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + size - 1)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  cmd = (int8_t *)malloc(size);
  if(cmd == NULL) {
    _errnum = EEPROM_MallocError;
    return;
  }
    
  memcpy(cmd,data,size);
  
  write(address,cmd,size);
  
  free(cmd);
  
}

void EEPROM::read(uint16_t address, int8_t& data)
{
  uint8_t page;
  uint8_t addr;
  uint8_t cmd[2];
  uint8_t len;
  int ack;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  // Compute page number
  page = 0;
  if(_type < T24C32)
    page = (uint8_t) (address / 256); 
  
  // Device address
  addr = EEPROM_Address | _address | (page << 1);
  
  if(_type < T24C32) {
    len = 1;
    
    // Word address
    cmd[0] = (uint8_t) (address - page * 256);
  }
  else {
    len = 2;
    
    // First word address (MSB)
    cmd[0] = (uint8_t) (address >> 8);
    
    // Second word address (LSB)
    cmd[1] = (uint8_t)address;
  }
  
  // Write command
  ack = _i2c.write((int)addr,(char *)cmd,len,true);
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
  // Read data
  ack = _i2c.read((int)addr,(char *)&data,sizeof(data));
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
}

void EEPROM::read(uint16_t address, int8_t *data, uint16_t size)
{
  uint8_t page;
  uint8_t addr;
  uint8_t cmd[2];
  uint8_t len;
  int ack;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  // Check size
  if(!checkAddress(address + size - 1)) {
    _errnum = EEPROM_OutOfRange; 
    return;
  }
  
  // Compute page number
  page = 0;
  if(_type < T24C32)
    page = (uint8_t) (address / 256); 
  
  // Device address
  addr = EEPROM_Address | _address | (page << 1);
  
  if(_type < T24C32) {
    len = 1;
    
    // Word address
    cmd[0] = (uint8_t) (address - page * 256);
  }
  else {
    len = 2;
    
    // First word address (MSB)
    cmd[0] = (uint8_t) (address >> 8);
    
    // Second word address (LSB)
    cmd[1] = (uint8_t) address;
  }
  
  // Write command 
  ack = _i2c.write((int)addr,(char *)cmd,len,true);
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
  // Sequential read
  ack = _i2c.read((int)addr,(char *)data,size);
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
}

void EEPROM::read(int8_t& data)
{
  uint8_t addr;
  int ack;
  
  // Check error
  if(_errnum) 
    return;
  
  // Device address
  addr = EEPROM_Address | _address;

  // Read data
  ack = _i2c.read((int)addr,(char *)&data,sizeof(data));
  if(ack != 0) {
    _errnum = EEPROM_I2cError;
    return;
  }
  
}

void EEPROM::read(uint16_t address, int16_t& data)
{
  int8_t cmd[2];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 1)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
 
  read(address,cmd,2);
  
  memcpy(&data,cmd,2);
  
}

void EEPROM::read(uint16_t address, int32_t& data)
{
  int8_t cmd[4];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 3)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
 
  read(address,cmd,4);
  
  memcpy(&data,cmd,4);
  
}

void EEPROM::read(uint16_t address, float& data)
{
  int8_t cmd[4];
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + 3)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  read(address,cmd,4);
  
  memcpy(&data,cmd,4);
  
}

void EEPROM::read(uint16_t address, void *data, uint16_t size)
{
  int8_t *cmd = NULL;
  
  // Check error
  if(_errnum) 
    return;
    
  // Check address
  if(!checkAddress(address + size - 1)) {
    _errnum = EEPROM_OutOfRange;
    return;
  }
  
  cmd = (int8_t *)malloc(size);
  if(cmd == NULL) {
    _errnum = EEPROM_MallocError;
    return;
  }
  
  read(address,cmd,size);
  
  memcpy(data,cmd,size);
  
  free(cmd);
  
}

void EEPROM::ready(void)
{
  int ack;
  uint8_t addr;
  uint8_t cmd;
  
  // Check error
  if(_errnum) 
    return;
  
  // Device address
  addr = EEPROM_Address | _address;
  
  cmd = 0;
  /*
  // Wait end of write
  do {
       ack = _i2c.write((int)addr,(char *)cmd,0);
  } while(ack != 0);
*/
    wait_ms(5);
}

uint32_t EEPROM::getSize(void)
{
  return(_size);
}

uint8_t EEPROM::getError(void)
{
  return(_errnum);
}

bool EEPROM::checkAddress(uint16_t address)
{
  bool ret = true;
  
  switch(_type) {
                  case T24C01 :
                     if(address >= T24C01)
                       ret = false;
                     break;
                  case T24C02 :
                     if(address >= T24C02)
                       ret = false;
                     break;
                  case T24C04 :
                     if(address >= T24C04)
                       ret = false;
                     break;
                  case T24C08 :
                     if(address >= T24C08)
                       ret = false;
                     break;
                  case T24C16 :
                     if(address >= T24C16)
                       ret = false;
                     break;
                  case T24C32 :
                     if(address >= T24C32)
                       ret = false;
                     break;
                  case T24C64 :
                     if(address >= T24C64)
                       ret = false;
                     break;
                  case T24C128 :
                     if(address >= T24C128)
                       ret = false;
                     break;
                  case T24C256 :
                     if(address >= T24C256)
                       ret = false;
                     break;
                  case T24C512 :
                     if(address >= T24C512)
                       ret = false;
                     break;
                  case T24C1024 :
                     if(address >= T24C1024)
                       ret = false;
                     break;
                  case T24C1025 :
                     if(address >= T24C1025 - 1)
                       ret = false;
                     break;
  }
  
  return(ret);
}