Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
Fork of Robotics_Lab_DCMotor by
main.cpp
- Committer:
- winstonkuo
- Date:
- 2016-05-18
- Revision:
- 9:85cbef9febe7
- Parent:
- 6:da43b63ffb24
- Child:
- 11:86912704fc2c
File content as of revision 9:85cbef9febe7:
/*DCMotor*/ // 10400/s+21.28
#include "mbed.h"
//The number will be compiled as type "double" in default
//Add a "f" after the number can make it compiled as type "float"
#define Ts 0.02f //period of timer1 (s)
#define Kp1 0.0048 //0.0085f
#define Kp2 0.0048 //0.0085f
#define Ki 0.1023//0.008f
Serial bluetooth(D10,D2); //宣告藍牙腳位
PwmOut pwm1(D7);
PwmOut pwm1n(D11);
PwmOut pwm2(D8);
PwmOut pwm2n(A3);
DigitalOut led1(A4);
DigitalOut led2(A5);
//Motor1 sensor
InterruptIn HallA_1(A1);
InterruptIn HallB_1(A2);
//Motor2 sensor
InterruptIn HallA_2(D13);
InterruptIn HallB_2(D12);
Ticker timer1;
void timer1_interrupt(void);
int timer1_counter;
void CN_interrupt(void);
void init_TIMER(void);
void init_PWM(void);
void init_CN(void);
void init_BLUETOOTH(void);
char speedCmd;
int8_t stateA_1=0, stateB_1=0, stateA_2=0, stateB_2=0;
int8_t state_1 = 0, state_1_old = 0, state_2 = 0, state_2_old = 0;
int v1Count = 0;
int v2Count = 0;
float v1 = 0.0, v1_ref = 0.0;
float v1_err = 0.0, v1_ierr = 0.0, PIout_1 = 0.0, PIout_1_old = 0.0;
float v1_old[10] = {}, v1_avg = 0.0;
float v2 = 0.0, v2_ref = 0.0;
float v2_err = 0.0, v2_ierr = 0.0, PIout_2 = 0.0, PIout_2_old = 0.0;
float v2_old[10] = {}, v2_avg = 0.0;
int main() {
init_BLUETOOTH();
init_TIMER();
init_PWM();
init_CN();
v1_ref = 0.0;
v2_ref = 0.0;
while(1)
{
if(bluetooth.readable())
{
speedCmd = bluetooth.getc();
switch(speedCmd)
{
case '1':
v1_ref = 17.0f;
v2_ref = -17.0f;
break;
case '2':
v1_ref = 50.0f;
v2_ref = -50.0f;
break;
case '3':
v1_ref = 86.0f;
v2_ref = -86.0f;
break;
case '4':
v1_ref = 120.0f;
v2_ref = -120.0f;
break;
case '5':
v1_ref = 153.0f;
v2_ref = -153.0f;
break;
case '6':
v1_ref = 187.0f;
v2_ref = -187.0f;
break;
case '7':
v1_ref = -20.0f;
v2_ref = 20.0f;
break;
case '8':
v1_ref = -80.0f;
v2_ref = 80.0f;
break;
case '9':
v1_ref = -120.0f;
v2_ref = 120.0f;
break;
}
}
}
}
void timer1_interrupt(void)
{
//Motor 1
v1 = (float)v1Count * 50.0f / 12.0f * 60.0f / 29.0f; //unit: rpm
v1_avg = v1_avg + ( v1 - v1_old[9])/10.0f;
for(int i = 9; i > 0 ; i--)
{
v1_old[i] = v1_old[i-1];
}
v1_old[0] = v1;
v1Count = 0;
///code for PI control///
v1_err = v1_ref - v1;
v1_ierr += v1_err;
PIout_1 = Kp1 * v1_err + Ki * Ts * (v1_ierr - v1_err);
// saturation
if(PIout_1 >= 0.5f)PIout_1 = 0.5f;
else if(PIout_1 <= -0.5f)PIout_1 = -0.5f;
pwm1.write(PIout_1 + 0.5f);
TIM1->CCER |= 0x4;
PIout_1_old = PIout_1;
//Motor 2
v2 = (float)v2Count * 50.0f / 12.0f * 60.0f / 29.0f; //unit: rpm
v2_avg = v2_avg + ( v2 - v2_old[9])/10.0f;
for(int i = 9; i > 0; i--)
{
v2_old[i] = v2_old[i-1];
}
v2_old[0] = v2;
v2Count = 0;
///code for PI control///
v2_err = v2_ref - v2;
v2_ierr += v2_err;
PIout_2 = Kp2 * v2_err + Ki * Ts * (v2_ierr - v2_err);
//saturation
if(PIout_2 >= 0.5f)PIout_2 = 0.5f;
else if(PIout_2 <= -0.5f)PIout_2 = -0.5f;
pwm2.write(PIout_2 + 0.5f);
TIM1->CCER |= 0x40;
PIout_2_old = PIout_2;
timer1_counter ++;
if (timer1_counter == 50)
{
timer1_counter = 0;
if(bluetooth.writeable())
{
bluetooth.printf("V1: %4.2f V2: %4.2f\n",v1_avg,v2_avg);
}
}
}
void CN_interrupt(void)
{
//Motor 1
stateA_1 = HallA_1.read();
stateB_1 = HallB_1.read();
///code for state determination///
if (stateA_1 == 0)
{
if (stateB_1 == 0)
state_1 = 0;
else
state_1 = 1;
}
else
{
if (stateB_1 == 1)
state_1 = 2;
else
state_1 = 3;
}
//Forward: v1Count +1
//Inverse: v1Count -1
if ( (state_1 == (state_1_old + 1)) || (state_1 == 0 && state_1_old == 3) )
v1Count++;
else if ( (state_1 == (state_1_old - 1)) || (state_1 == 3 && state_1_old == 0))
v1Count--;
state_1_old = state_1;
//Motor 2
stateA_2 = HallA_2.read();
stateB_2 = HallB_2.read();
///code for state determination///
if (stateA_2 == 0)
{
if (stateB_2 == 0)
state_2 = 0;
else
state_2 = 1;
}
else
{
if (stateB_2 == 1)
state_2 = 2;
else
state_2 = 3;
}
//Forward: v2Count +1
//Inverse: v2Count -1
if ( (state_2 == (state_2_old + 1)) || (state_2 == 0 && state_2_old == 3) )
v2Count++;
else if ( (state_2 == (state_2_old - 1)) || (state_2 == 3 && state_2_old == 0) )
v2Count--;
state_2_old = state_2;
}
void init_TIMER(void)
{
timer1.attach_us(&timer1_interrupt, 20000);//10ms interrupt period (100 Hz)
timer1_counter = 0;
}
void init_PWM(void)
{
pwm1.period_us(50);
pwm1.write(0.5);
TIM1->CCER |= 0x4;
pwm2.period_us(50);
pwm2.write(0.5);
TIM1->CCER |= 0x40;
}
void init_CN(void)
{
HallA_1.rise(&CN_interrupt);
HallA_1.fall(&CN_interrupt);
HallB_1.rise(&CN_interrupt);
HallB_1.fall(&CN_interrupt);
HallA_2.rise(&CN_interrupt);
HallA_2.fall(&CN_interrupt);
HallB_2.rise(&CN_interrupt);
HallB_2.fall(&CN_interrupt);
stateA_1 = HallA_1.read();
stateB_1 = HallB_1.read();
stateA_2 = HallA_2.read();
stateB_2 = HallB_2.read();
}
void init_BLUETOOTH(void)
{
bluetooth.baud(115200);
}
