The MCR20A Connectivity Test application is an SMAC based demo application which provides the user with means to test basic transmission-reception functionalities along with several advanced testing features based on the ASP and SMAC APIs.
Dependencies: fsl_phy_mcr20a fsl_smac mbed-rtos mbed
Fork of mcr20_connectivity_test by
Modes of Operation
The MCR20A Connectivity Test application has five main features:
Continuous Tests
This menu option displays several test suites
- IDLE: This option sets the transceiver and all the state machines to idle.
- Burst PRBS Transmission using packet mode: This option continuously sends packets which contain a pseudo-random payload of fixed length.
- Continuous Modulated Transmission: This option allows the user to select between modulating 1’s, 0’s, or a pseudo-random sequence (PN) and sending them OTA continuously (in continuous mode).
- Continuous Unmodulated Transmission: This option allows the user to send an unmodulated signal OTA having the frequency equal to the central frequency of the currently selected channel.
- Continuous Reception: This test places the transceiver in reception and dumps the payload bytes of the received packets to the TERM in ASCII-converted hexadecimal characters.
- Continuous Energy Detect: This option launches consecutive energy detect requests at fixed hard-coded intervals for the current channel, and prints their values to the TERM.
- Continuous Scan: This option is similar to the previous one, except that at each iteration it obtains the energy values on all channels.
- Continuous CCA: This option launches consecutive CCA requests for the currently selected channel at a fixed. hard-coded interval, and prints “Idle” or “Busy” depending on the CCA result.
Packet Error Rate
This menu option displays a configuration menu for testing the packet error rate. The menu displayed also depends on the ‘r’ or ‘t’ shortcut key. If ‘r’ is pressed, the following menu is for PER RX, otherwise it is for PER TX. For example, if two MCR20A platforms have Connectivity Test loaded, one of the boards can be set in RX and the other in TX as in the following figures.
Range Test
This test displays a configuration menu that performs a ‘ping-pong’ test to aid the user in determining the range (as distance between two platforms) in which the MCR20A platform can function properly. The sub-menu also depends on the ‘r’ and ‘t’ shortcuts so that one of the platforms can be the initializer (first to start a TX) and the other can respond to requests. The test is started and stopped only by user intervention and during its execution it will display the signal strength for each received packet. At the end of the test, the platform configured as the initializer (TX) displays a summary of how many packets were lost and what was the average RSSI.
Radio Registers Edit
This menu allows the user to read-write transceiver registers and to dump all address-value pairs from the transceiver registers to the TERM. The described features are accessible through the entries of this menu. For each access request (read or write) to a certain register, the register address is validated partially, and it is the responsibility of the user to access an existing register. For example, if the last accessible register is at 0xFD, the application only validates that the address is in the unsigned char range, but the user has the possibility to request register 0xFF. To ensure that a proper range is used, the user should first use the dump register feature to see the valid address ranges.
Carrier Sense and Transmission Control
This menu allows the user to choose between two tests. The former is the Carrier Sense test, which performs ED continuously until the ED value is above the CCA threshold (configured using ‘k’ and ‘l’ shortcuts) and then transmits a packet which contains pseudo-random data with the payload size configured using ‘n’ and ‘m’ shortcuts. The latter is the Transmission Control test, which displays a selection menu for number of packets identical with the one in PER TX test, then prompts the user to enter a decimal value resembling the inter-packet delay in milliseconds. After that, the application starts sending the selected number of packets with the selected inter-packet delay, using pseudo-random data for the payload with the size configured with ‘n’ and ‘m’ shortcuts.
Keys Usage
The following keys have the effect described below:
- ‘t’ : Brings up the configuration menu for the transmitter in both PER and Range tests.
- ‘r’ : Brings up the configuration menu for the receiver in both PER and Range tests.
- ‘q’ : Increments channel number. If pressed when the current channel is 26, the channel number changes to 11.
- ‘w’ : Decrements channel number. If pressed when the current channel is 11, the channel number will change to 26.
- ‘a’ : Increments output power value. If output power is at maximum and this key is pressed, the output power goes to the minimum (in this case 0x03).
- ‘s’ : Decrements output power value. If output power is at minimum and this key is pressed, the output power goes to the maximum (in this case 0x1F). These are not directly mapped to dBm values. Instead the output power value is written to the appropriate register. The user should consult the reference manual to determine the relationship between selected value and power in dBm.
- ‘n’ : Increments the length of the payload. This value is used in both PER TX test to build-up the payload and in Transmission Control test for the same reason.
- ‘m’ : Decrements the length of the payload. Incrementation and decrementation are performed in the [17, 116] interval. All overflows at one end lead to setting the other end’s value.
- ‘k’ : Increments the CCA threshold for the Carrier Sense test. In this test the CCA before TX algorithm is implemented at application level, and the channel idle threshold is established using this parameter.
- ‘l’ : Decrements the CCA threshold for the Carrier Sense test.
Documentation
SMAC Demo Applications User Guide
Source/Connectivity_TestApp.cpp
- Committer:
- andreikovacs
- Date:
- 2015-07-16
- Revision:
- 0:4eb2240dbd22
- Child:
- 1:1eb1eccc81c2
File content as of revision 0:4eb2240dbd22:
/*! * Copyright (c) 2015, Freescale Semiconductor, Inc. * All rights reserved. * * \file Connectivity_TestApp.c * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /************************************************************************************ ************************************************************************************* * Include ************************************************************************************* ************************************************************************************/ #include "Application_Interface.h" #include "Connectivity_Test_Platform.h" /************************************************************************************ ************************************************************************************* * Private type definitions ************************************************************************************* ************************************************************************************/ /************************************************************************************ ************************************************************************************* * Macros ************************************************************************************* ************************************************************************************/ #define gPrbs9BufferLength_c ( 65 ) #define gContTxModSelectPN9_c ( 2 ) #define gContTxModSelectOnes_c ( 1 ) #define gContTxModSelectZeros_c ( 0 ) #define SelfNotificationEvent() mainTask->signal_set(gCTSelf_EVENT_c); #define gUART_RX_EVENT_c (1<<0) #define gMcps_Cnf_EVENT_c (1<<1) #define gMcps_Ind_EVENT_c (1<<2) #define gMlme_EdCnf_EVENT_c (1<<3) #define gMlme_CcaCnf_EVENT_c (1<<4) #define gMlme_TimeoutInd_EVENT_c (1<<5) #define gRangeTest_EVENT_c (1<<6) #define gCTSelf_EVENT_c (1<<7) #define gTimePassed_EVENT_c (1<<8) #define gEventsAll_c (gUART_RX_EVENT_c | gMcps_Ind_EVENT_c | gMcps_Cnf_EVENT_c | \ gMlme_TimeoutInd_EVENT_c | gMlme_EdCnf_EVENT_c | gMlme_CcaCnf_EVENT_c | \ gRangeTest_EVENT_c | gCTSelf_EVENT_c | gTimePassed_EVENT_c) #define Delay_ms(a) #define FlaggedDelay_ms(a) TMR_StartSingleShotTimer(AppDelayTmr, a, DelayTimeElapsed, NULL) #ifdef gPHY_802_15_4g_d #define GetTimestampUS() PhyTime_GetTimestampUs() #define GetTransmissionTime(payload, bitrate) ((((gPhyFSKPreambleLength_c + \ gPhyMRFSKPHRLength_c + gPhyMRFSKSFDLength_c + \ sizeof(smacHeader_t) + payload + gPhyFCSSize_c )*8000 )/ bitrate)) #else #define GetTimestampUS() (16*PhyTime_GetTimestamp()) #define GetTransmissionTime(payload, bitrate) (((6 + sizeof(smacHeader_t) + payload + 2)*32)) //bitrate is fixed for 2.4 GHz #define crtBitrate (0) #endif /************************************************************************************ ************************************************************************************* * Public memory declarations ************************************************************************************* ************************************************************************************/ uint32_t gTaskEventFlags; /*smac related variables*/ bool_t bTxDone; bool_t bRxDone; bool_t bScanDone; bool_t gCCaGotResult; bool_t gIsChannelIdle; bool_t bEdDone; bool_t failedPRBS9; uint8_t u8LastRxRssiValue; bool_t evTestParameters; uint8_t au8ScanResults[129]; /*serial manager related variables*/ uint8_t gu8UartData; bool_t evDataFromUART; uint8_t mAppSer; /*connectivity test state machine variables*/ operationModes_t testOpMode; operationModes_t prevOpMode; channels_t testChannel; uint8_t testPower; uint8_t testPayloadLen; uint8_t contTxModBitValue; uint8_t ccaThresh; bool_t shortCutsEnabled; ConnectivityStates_t connState; ContinuousTxRxTestStates_t cTxRxState; PerTxStates_t perTxState; PerRxStates_t perRxState; RangeTxStates_t rangeTxState; RangeRxStates_t rangeRxState; EditRegsStates_t eRState; oRStates_t oRState; rRStates_t rRState; dRStates_t dRState; CSenseTCtrlStates_t cstcState; uint8_t ChannelToScan; smacTestMode_t contTestRunning; /*asp related variables*/ AppToAspMessage_t aspTestRequestMsg; extern uint8_t u8Prbs9Buffer[gPrbs9BufferLength_c]; Serial uart(USBTX,USBRX); Thread *mainTask; /************************************************************************************ ************************************************************************************* * Private memory declarations ************************************************************************************* ************************************************************************************/ static uint8_t gau8RxDataBuffer[gMaxSmacSDULength_c + sizeof(txPacket_t)]; static uint8_t gau8TxDataBuffer[gMaxSmacSDULength_c + sizeof(rxPacket_t)]; static txPacket_t * gAppTxPacket; static rxPacket_t * gAppRxPacket; static uint8_t timePassed; Timeout RangeTestTmr; Timer AppDelayTmr; /************************************************************************************ ************************************************************************************* * Private prototypes ************************************************************************************* ************************************************************************************/ #if CT_Feature_Calibration extern void StoreTrimValueToFlash (uint32_t trimValue, CalibrationOptionSelect_t option); #endif /*platform independent functions*/ static void SerialUIStateMachine(void); static bool_t SerialContinuousTxRxTest(void); static bool_t PacketErrorRateTx(void); static bool_t PacketErrorRateRx(void); static void SetRadioRxOnNoTimeOut(void); static void HandleEvents(int32_t evSignals); static void PrintTestParameters(bool_t bEraseLine); static void PrintPerRxFinalLine(uint16_t u16Received, uint16_t u16Total); extern uint32_t HexString2Dec(uint8_t * au8String); static bool_t stringComp(uint8_t * au8leftString, uint8_t * au8RightString, uint8_t bytesToCompare); /********************************/ static void RangeTest_Timer_CallBack (); static bool_t RangeTx(void); static bool_t RangeRx(void); static bool_t EditRegisters(void); #if CT_Feature_Direct_Registers || CT_Feature_Indirect_Registers bool_t OverrideRegisters(void); bool_t ReadRegisters(void); bool_t DumpRegisters(void); bool_t bIsRegisterDirect = TRUE; #endif static bool_t CSenseAndTCtrl(void); static void TransmissionControlHandler(void); static void CarrierSenseHandler(void); static smacErrors_t TestMode ( smacTestMode_t mode); static void PacketHandler_Prbs9(void); static void DelayTimeElapsed(); static void IncrementChannelOnEdEvent(); extern void ReadRFRegs(registerAddressSize_t, registerAddressSize_t); extern void PrintTestParameters(bool_t bEraseLine); /*************************************/ /************************************************************************************ ************************************************************************************* * Public functions ************************************************************************************* ************************************************************************************/ void InitProject(void); void InitSmac(void); void main_task(void const *argument); extern void ResetMCU(void); void UartRxCallBack(void * param); void PrintMenu(char * const pu8Menu[], uint8_t port); /************************************************************************************ * * InitProject * ************************************************************************************/ void InitProject(void) { /*Global Data init*/ testPayloadLen = gMaxSmacSDULength_c; testOpMode = gDefaultOperationMode_c; testChannel = gDefaultChannelNumber_c; testPower = gDefaultOutputPower_c; testPayloadLen = gDefaultPayload_c; contTestRunning = gTestModeForceIdle_c; shortCutsEnabled = FALSE; connState = gConnInitState_c; cTxRxState = gCTxRxStateInit_c; perTxState = gPerTxStateInit_c; perRxState = gPerRxStateInit_c; rangeTxState = gRangeTxStateInit_c; rangeRxState = gRangeRxStateInit_c; prevOpMode = gDefaultOperationMode_c; oRState = gORStateInit_c; rRState = gRRStateInit_c; dRState = gDRStateInit_c; ccaThresh = gDefaultCCAThreshold_c; bEdDone = FALSE; evDataFromUART = FALSE; InitProject_custom(); } /************************************************************************************ ************************************************************************************* * SAP functions ************************************************************************************* ************************************************************************************/ //(Management) Sap handler for managing timeout indication and ED confirm smacErrors_t smacToAppMlmeSap(smacToAppMlmeMessage_t* pMsg, instanceId_t instance) { switch(pMsg->msgType) { case gMlmeEdCnf_c: au8ScanResults[pMsg->msgData.edCnf.scannedChannel] = pMsg->msgData.edCnf.energyLeveldB; gTaskEventFlags |= gMlme_EdCnf_EVENT_c; break; case gMlmeCcaCnf_c: gTaskEventFlags |= gMlme_CcaCnf_EVENT_c; if(pMsg->msgData.ccaCnf.status == gErrorNoError_c) gIsChannelIdle = TRUE; else gIsChannelIdle = FALSE; break; case gMlmeTimeoutInd_c: gTaskEventFlags |= gMlme_TimeoutInd_EVENT_c; break; default: break; } MEM_BufferFree(pMsg); return gErrorNoError_c; } //(Data) Sap handler for managing data confirm and data indication smacErrors_t smacToAppMcpsSap(smacToAppDataMessage_t* pMsg, instanceId_t instance) { switch(pMsg->msgType) { case gMcpsDataInd_c: if(pMsg->msgData.dataInd.pRxPacket->rxStatus == rxSuccessStatus_c) { u8LastRxRssiValue = pMsg->msgData.dataInd.u8LastRxRssi; gTaskEventFlags |= gMcps_Ind_EVENT_c; } break; case gMcpsDataCnf_c: if(pMsg->msgData.dataCnf.status == gErrorNoError_c) { gTaskEventFlags |= gMcps_Cnf_EVENT_c; } break; default: break; } MEM_BufferFree(pMsg); return gErrorNoError_c; } static void HandleEvents(int32_t evSignals) { if(evSignals & gUART_RX_EVENT_c) { if(shortCutsEnabled) { ShortCutsParser(gu8UartData); } else { evDataFromUART = TRUE; } } if(evSignals & gMcps_Cnf_EVENT_c) { bTxDone = TRUE; } if(evSignals & gMcps_Ind_EVENT_c) { bRxDone = TRUE; } if(evSignals & gMlme_TimeoutInd_EVENT_c) { } if(evSignals & gRangeTest_EVENT_c) { bRxDone=TRUE; } if(evSignals & gMlme_EdCnf_EVENT_c) { if (cTxRxState == gCTxRxStateRunnigScanTest_c) { IncrementChannelOnEdEvent(); } if (cTxRxState == gCTxRxStateRunnigEdTest_c) { cTxRxState = gCTxRxStateRunningEdTestGotResult_c; } if (connState == gConnCSenseAndTCtrl_c) { bScanDone = TRUE; } bEdDone = TRUE; } if(evSignals & gMlme_CcaCnf_EVENT_c) { gCCaGotResult = TRUE; uart.printf("Channel %d is", (uint32_t)testChannel); if(gIsChannelIdle) uart.printf("Idle\r\n"); else uart.printf("Busy\r\n"); } if(evSignals & gCTSelf_EVENT_c) { } } /*************************************************************************/ /*Main Task: Application entry point*/ /*************************************************************************/ void main_task(void const *argument) { static bool_t bIsInitialized = FALSE; static bool_t bUserInteraction = FALSE; //Initialize Memory Manager, Timer Manager and LEDs. if( !bIsInitialized ) { MEM_Init(); //initialize PHY Phy_Init(); InitApp(); /*Prints the Welcome screens in the terminal*/ PrintMenu(cu8FreescaleLogo, mAppSer); connState = gConnIdleState_c; bIsInitialized = TRUE; } if(!bUserInteraction) { while(1) { //(void)OSA_EventWait(&gTaskEvent, gEventsAll_c, FALSE, OSA_WAIT_FOREVER ,&gTaskEventFlags); Thread::signal_wait(gEventsAll_c); if(gTaskEventFlags & gUART_RX_EVENT_c) { if(gu8UartData == '\r') { SelfNotificationEvent(); bUserInteraction = TRUE; break; } else { PrintMenu(cu8FreescaleLogo, mAppSer); } } } } if(bUserInteraction) { while(1) { //(void)OSA_EventWait(&gTaskEvent, gEventsAll_c, FALSE, OSA_WAIT_FOREVER ,&gTaskEventFlags); Thread::signal_wait(gEventsAll_c); HandleEvents(gTaskEventFlags); SerialUIStateMachine(); } } } /*************************************************************************/ /*InitApp: Initializes application mdoules and data*/ /*************************************************************************/ void InitApp() { gAppTxPacket = (txPacket_t*)gau8TxDataBuffer; //Map TX packet to buffer gAppRxPacket = (rxPacket_t*)gau8RxDataBuffer; //Map Rx packet to buffer gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c; uart.baud(115200); //Initialise SMAC InitSmac(); //Tell SMAC who to call when it needs to pass a message to the application thread. Smac_RegisterSapHandlers((SMAC_APP_MCPS_SapHandler_t)smacToAppMcpsSap,(SMAC_APP_MLME_SapHandler_t)smacToAppMlmeSap,0); InitProject(); InitApp_custom(); ASP_Init(0, mAppSer); SMACFillHeader(&(gAppTxPacket->smacHeader), gBroadcastAddress_c); //@CMA, Conn Test. Start with broadcast address default (void)MLMEPAOutputAdjust(testPower); (void)MLMESetChannelRequest(testChannel); //@CMA, Conn Test. Start Foperation at default channel } /************************************************************************************ * * Connectivity Test State Machine * ************************************************************************************/ void SerialUIStateMachine(void) { if((gConnSelectTest_c == connState) && evTestParameters) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(connState) { case gConnIdleState_c: PrintMenu(cu8MainMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; connState = gConnSelectTest_c; break; case gConnSelectTest_c: if(evDataFromUART){ if('1' == gu8UartData) { cTxRxState = gCTxRxStateInit_c; connState = gConnContinuousTxRxState_c; } else if('2' == gu8UartData) { perTxState = gPerTxStateInit_c; perRxState = gPerRxStateInit_c; connState = gConnPerState_c; } else if('3' == gu8UartData) { rangeTxState = gRangeTxStateInit_c; rangeRxState = gRangeRxStateInit_c; connState = gConnRangeState_c; } else if('4' == gu8UartData) { cstcState = gCsTcStateInit_c; connState = gConnCSenseAndTCtrl_c; } #if CT_Feature_Direct_Registers || CT_Feature_Indirect_Registers else if('5' == gu8UartData) { eRState = gERStateInit_c; connState = gConnRegEditState_c; } #endif #if CT_Feature_Bitrate_Select else if('6' == gu8UartData) { bsState = gBSStateInit_c; connState = gConnBitrateSelectState_c; } #endif #if CT_Feature_Calibration else if('7' == gu8UartData) { connState = gConnEDMeasCalib_c; edCalState= gEdCalStateInit_c; } #endif else if('!' == gu8UartData) { ResetMCU(); } evDataFromUART = FALSE; SelfNotificationEvent(); } break; case gConnContinuousTxRxState_c: if(SerialContinuousTxRxTest()) { connState = gConnIdleState_c; SelfNotificationEvent(); } break; case gConnPerState_c: if(mTxOperation_c == testOpMode) { if(PacketErrorRateTx()) { connState = gConnIdleState_c; SelfNotificationEvent(); } } else { if(PacketErrorRateRx()) { connState = gConnIdleState_c; SelfNotificationEvent(); } } break; case gConnRangeState_c: if(mTxOperation_c == testOpMode) { if(RangeTx()) { connState = gConnIdleState_c; SelfNotificationEvent(); } } else { if(RangeRx()) { connState = gConnIdleState_c; SelfNotificationEvent(); } } break; case gConnRegEditState_c: if(EditRegisters()) { connState = gConnIdleState_c; SelfNotificationEvent(); } break; #if CT_Feature_Bitrate_Select case gConnBitrateSelectState_c: if(Bitrate_Select()) { connState = gConnIdleState_c; } break; #endif case gConnCSenseAndTCtrl_c: if(CSenseAndTCtrl()) { connState = gConnIdleState_c; SelfNotificationEvent(); } break; #if CT_Feature_Calibration case gConnEDMeasCalib_c: if(EDCalibrationMeasurement()) { connState = gConnIdleState_c; SelfNotificationEvent(); } break; #endif default: break; } if(prevOpMode != testOpMode) { perTxState = gPerTxStateInit_c; perRxState = gPerRxStateInit_c; rangeTxState = gRangeTxStateInit_c; rangeRxState = gRangeRxStateInit_c; prevOpMode = testOpMode; SelfNotificationEvent(); } } /************************************************************************************ * * Continuous Tests State Machine * ************************************************************************************/ bool_t SerialContinuousTxRxTest(void) { bool_t bBackFlag = FALSE; uint8_t u8Index, u8TempEnergyValue, u8TempScanValue; if(evTestParameters) { (void)TestMode(gTestModeForceIdle_c); #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); if(gTestModePRBS9_c == contTestRunning) { cTxRxState = gCTxRxStateRunningPRBS9Test_c; } (void)TestMode(contTestRunning); if(gCTxRxStateSelectTest_c == cTxRxState) { PrintTestParameters(TRUE); } else { PrintTestParameters(FALSE); uart.printf("\r\n"); } if(gCTxRxStateRunnigRxTest_c == cTxRxState) { bRxDone = FALSE; gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c; (void)MLMERXEnableRequest(gAppRxPacket, 0); } evTestParameters = FALSE; } switch(cTxRxState) { case gCTxRxStateIdle_c: if((evDataFromUART) && ('\r' == gu8UartData)) { cTxRxState = gCTxRxStateInit_c; evDataFromUART = FALSE; SelfNotificationEvent(); } break; case gCTxRxStateInit_c: PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8ContinuousTestMenu, mAppSer); //Phy in StandBy, smacstate in Idle. (void)TestMode(gTestModeForceIdle_c); while(MLMESetChannelRequest(testChannel)); uart.printf(cu8ContinuousTestTags[contTestRunning]); if(contTestRunning == gTestModeContinuousTxModulated_c) { uart.printf(cu8TxModTestTags[contTxModBitValue]); } (void)TestMode(contTestRunning); uart.printf("\r\n\r\n"); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; cTxRxState = gCTxRxStateSelectTest_c; break; case gCTxRxStateSelectTest_c: if(evDataFromUART) { if('1' == gu8UartData) { contTestRunning = gTestModeForceIdle_c; cTxRxState = gCTxRxStateInit_c; SelfNotificationEvent(); } else if('2' == gu8UartData) { shortCutsEnabled = FALSE; (void)TestMode(gTestModeForceIdle_c); contTestRunning = gTestModePRBS9_c; MLMESetChannelRequest(testChannel); uart.printf("\f\r\nPress [p] to stop the Continuous PRBS9 test\r\n"); (void)TestMode(contTestRunning); cTxRxState = gCTxRxStateRunningPRBS9Test_c; } else if('3' == gu8UartData) { contTestRunning = gTestModeContinuousTxModulated_c; cTxRxState = gCTxRxStateRunningTXModSelectOpt; // uart.printf( "\f\r\n To use this mode shunt pins 3-4 on J18"); uart.printf("\f\r\nPress 2 for PN9, 1 to modulate values of 1 and 0 to modulate values of 0"); } else if('4' == gu8UartData) { if(gTestModeContinuousTxUnmodulated_c != contTestRunning) { contTestRunning = gTestModeContinuousTxUnmodulated_c; cTxRxState = gCTxRxStateInit_c; SelfNotificationEvent(); } } else if('5' == gu8UartData) { shortCutsEnabled = FALSE; (void)TestMode(gTestModeForceIdle_c); MLMESetChannelRequest(testChannel); contTestRunning = gTestModeForceIdle_c; uart.printf("\f\r\nPress [p] to stop receiving broadcast packets \r\n"); bRxDone = FALSE; gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c; (void)MLMERXEnableRequest(gAppRxPacket, 0); cTxRxState = gCTxRxStateRunnigRxTest_c; } else if('6' == gu8UartData) { (void)TestMode(gTestModeForceIdle_c); contTestRunning = gTestModeForceIdle_c; uart.printf("\f\r\nPress [p] to stop the Continuous ED test\r\n"); cTxRxState = gCTxRxStateRunnigEdTest_c; Thread::wait(200); } else if('7' == gu8UartData) { (void)TestMode(gTestModeForceIdle_c); contTestRunning = gTestModeForceIdle_c; ChannelToScan= gDefaultChannelNumber_c; uart.printf("\f\r\nPress [p] to stop the Continuous SCAN test\r\n"); bScanDone = FALSE; cTxRxState = gCTxRxStateRunnigScanTest_c; SelfNotificationEvent(); } else if('8' == gu8UartData) { (void)TestMode(gTestModeForceIdle_c); uart.printf("\f\r\nPress [p] to stop the Continuous CCA test\r\n"); contTestRunning = gTestModeForceIdle_c; cTxRxState = gCTxRxStateRunnigCcaTest_c; Thread::wait(100); MLMECcaRequest(); } #if CT_Feature_BER_Test else if ('9' == gu8UartData) { uart.printf( "\f\r\nPress [p] to stop the Continuous BER test\r\n"); contTestRunning = gTestModeContinuousRxBER_c; cTxRxState = gCTxRxStateInit_c; SelfNotificationEvent(); } #endif else if('p' == gu8UartData) { (void)TestMode(gTestModeForceIdle_c); (void)MLMESetChannelRequest(testChannel); AppDelayTmr.stop(); timePassed = FALSE; bBackFlag = TRUE; } evDataFromUART = FALSE; } break; case gCTxRxStateRunningTXModSelectOpt: if(evDataFromUART) { if(gu8UartData == '2') contTxModBitValue = gContTxModSelectPN9_c; else if(gu8UartData == '1') contTxModBitValue = gContTxModSelectOnes_c; else if(gu8UartData == '0') contTxModBitValue = gContTxModSelectZeros_c; evDataFromUART = FALSE; cTxRxState = gCTxRxStateInit_c; SelfNotificationEvent(); } break; case gCTxRxStateRunningPRBS9Test_c: if(bTxDone || failedPRBS9) { failedPRBS9 = FALSE; bTxDone = FALSE; PacketHandler_Prbs9(); } if(evDataFromUART && 'p' == gu8UartData) { contTestRunning = gTestModeForceIdle_c; (void)TestMode(gTestModeForceIdle_c); (void)MLMESetChannelRequest(testChannel); AppDelayTmr.stop(); timePassed = FALSE; uart.printf("\r\n\r\n Press [enter] to go back to the Continuous test menu "); cTxRxState = gCTxRxStateIdle_c; evDataFromUART = FALSE; shortCutsEnabled = TRUE; } break; case gCTxRxStateRunnigRxTest_c: if(bRxDone) { if (gAppRxPacket->rxStatus == rxSuccessStatus_c) { uart.printf("New Packet: "); for(u8Index = 0; u8Index < (gAppRxPacket->u8DataLength); u8Index++){ uart.printf( (const char *)(&(gAppRxPacket->smacPdu.smacPdu[u8Index]))); } uart.printf(" \r\n"); } bRxDone = FALSE; gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c; (void)MLMERXEnableRequest(gAppRxPacket, 0); } if((evDataFromUART) && ('p' == gu8UartData)) { (void)MLMERXDisableRequest(); (void)TestMode(gTestModeForceIdle_c); uart.printf("\r\n\r\n Press [enter] to go back to the Continuous test menu "); cTxRxState = gCTxRxStateIdle_c; evDataFromUART = FALSE; } break; case gCTxRxStateRunnigEdTest_c: if(timePassed) { timePassed = FALSE; Thread::wait(100); MLMEScanRequest(testChannel); } if((evDataFromUART) && ('p' == gu8UartData)) { uart.printf("\r\n\r\n Press [enter] to go back to the Continuous test menu "); cTxRxState = gCTxRxStateIdle_c; evDataFromUART = FALSE; timePassed = FALSE; AppDelayTmr.stop(); } break; case gCTxRxStateRunningEdTestGotResult_c: uart.printf("Energy on the Channel %d : ", (uint32_t)testChannel); u8TempEnergyValue = au8ScanResults[testChannel]; if(u8TempEnergyValue != 0) uart.printf( "-"); uart.printf("%d dBm\r\n ",(uint32_t)u8TempEnergyValue); cTxRxState = gCTxRxStateRunnigEdTest_c; break; case gCTxRxStateRunnigCcaTest_c: if(timePassed && gCCaGotResult) { gCCaGotResult = FALSE; timePassed = FALSE; MLMECcaRequest(); Thread::wait(100); } if((evDataFromUART) && ('p' == gu8UartData)) { uart.printf("\r\n\r\n Press [enter] to go back to the Continuous test menu "); cTxRxState = gCTxRxStateIdle_c; evDataFromUART = FALSE; timePassed = FALSE; AppDelayTmr.stop(); } break; case gCTxRxStateRunnigScanTest_c: if(bScanDone && timePassed) { //Enters here until all channels have been scanned. Then starts to print. uart.printf("Results : "); for(u8Index = gMinChannel_c; u8Index <= gMaxChannel_c ; u8Index++) { u8TempScanValue= au8ScanResults[u8Index]; if(u8TempScanValue != 0) uart.printf("-"); uart.printf("%d, ", (uint32_t) u8TempScanValue); } uart.printf("\b \r\n"); bScanDone = FALSE; ChannelToScan = gDefaultChannelNumber_c; // Restart channel count timePassed = FALSE; } if((evDataFromUART) && ('p' == gu8UartData)) { uart.printf("\r\n\r\n Press [enter] to go back to the Continuous test menu "); cTxRxState = gCTxRxStateIdle_c; evDataFromUART = FALSE; } else { if(ChannelToScan == gDefaultChannelNumber_c) { smacErrors_t err = MLMEScanRequest((channels_t)ChannelToScan); if(err == gErrorNoError_c) ChannelToScan++; } //Each of the other channels is scanned after SMAC notifies us that //it has obtained the energy value on the currently scanned channel //(channel scanning is performed asynchronously). See IncrementChannelOnEdEvent(). } break; default: break; } return bBackFlag; } /************************************************************************************ * * PER Handler for board that is performing TX * ************************************************************************************/ bool_t PacketErrorRateTx(void) { const uint16_t u16TotalPacketsOptions[] = {1,25,100,500,1000,2000,5000,10000,65535}; static uint16_t u16TotalPackets; static uint16_t u16SentPackets; static uint32_t miliSecDelay; static uint32_t u32MinDelay = 4; uint8_t u8Index; bool_t bBackFlag = FALSE; if(evTestParameters) { (void)MLMERXDisableRequest(); #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(perTxState) { case gPerTxStateInit_c: PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8PerTxTestMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; perTxState = gPerTxStateSelectPacketNum_c; miliSecDelay = 0; u32MinDelay = 4; (void)MLMERXDisableRequest(); break; case gPerTxStateSelectPacketNum_c: if(evDataFromUART) { if((gu8UartData >= '0') && (gu8UartData <= '8')) { u16TotalPackets = u16TotalPacketsOptions[gu8UartData - '0']; shortCutsEnabled = FALSE; u32MinDelay += (GetTransmissionTime(testPayloadLen, crtBitrate) / 1000); uart.printf("\r\n\r\n Please type TX interval in miliseconds ( > %d ms ) and press [ENTER]\r\n", u32MinDelay); perTxState = gPerTxStateInputPacketDelay_c; } else if('p' == gu8UartData) { bBackFlag = TRUE; } evDataFromUART = FALSE; } break; case gPerTxStateInputPacketDelay_c: if(evDataFromUART) { if(gu8UartData == '\r') { if(miliSecDelay < u32MinDelay) { uart.printf("\r\n\tError: TX Interval too small\r\n"); perTxState = gPerTxStateInit_c; SelfNotificationEvent(); } else { perTxState = gPerTxStateStartTest_c; SelfNotificationEvent(); } } else if((gu8UartData >= '0') && (gu8UartData <='9')) { miliSecDelay = miliSecDelay*10 + (gu8UartData - '0'); uart.printf("%d", (uint32_t)(gu8UartData - '0')); } else if('p' == gu8UartData) { perTxState = gPerTxStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; case gPerTxStateStartTest_c: gAppTxPacket->u8DataLength = testPayloadLen; u16SentPackets = 0; gAppTxPacket->smacPdu.smacPdu[0] = (u16TotalPackets >> 8); gAppTxPacket->smacPdu.smacPdu[1] = (uint8_t)u16TotalPackets; gAppTxPacket->smacPdu.smacPdu[2] = ((u16SentPackets+1) >> 8); gAppTxPacket->smacPdu.smacPdu[3] = (uint8_t)(u16SentPackets+1); FLib_MemCpy(&(gAppTxPacket->smacPdu.smacPdu[4]), (void*)"SMAC PER Demo",13); if(17 < testPayloadLen) { for(u8Index=17;u8Index<testPayloadLen;u8Index++) { gAppTxPacket->smacPdu.smacPdu[u8Index] = (u8Index%10)+'0'; } } bTxDone = FALSE; (void)MCPSDataRequest(gAppTxPacket); u16SentPackets++; uart.printf("\f\r\n Running PER Tx, Sending %d Packets",(uint32_t)u16TotalPackets); perTxState = gPerTxStateRunningTest_c; Thread::wait(miliSecDelay); break; case gPerTxStateRunningTest_c: if(bTxDone && timePassed) { uart.printf("\r\n Packet %d ",(uint32_t)u16SentPackets); if(u16SentPackets == u16TotalPackets) { uart.printf("\r\n\r\nSending last %d frames \r\n",(uint32_t)mTotalFinalFrames_c); FLib_MemCpy(&(gAppTxPacket->smacPdu.smacPdu[4]), (void *)"DONE",4); gAppTxPacket->u8DataLength = 8; u16SentPackets = 0; u16TotalPackets = mTotalFinalFrames_c; gAppTxPacket->u8DataLength = 8; perTxState = gPerTxStateSendingLastFrames_c; } else { gAppTxPacket->smacPdu.smacPdu[2] = ((u16SentPackets+1) >> 8); gAppTxPacket->smacPdu.smacPdu[3] = (uint8_t)(u16SentPackets+1); gAppTxPacket->u8DataLength = testPayloadLen; } bTxDone = FALSE; (void)MCPSDataRequest(gAppTxPacket); u16SentPackets++; timePassed = FALSE; Thread::wait(miliSecDelay); } if(evDataFromUART && gu8UartData == ' ') { uart.printf("\r\n\r\n-Test interrupted by user. Press [ENTER] to continue\r\n\r\n"); perTxState = gPerTxStateIdle_c; } break; case gPerTxStateSendingLastFrames_c: if(bTxDone && timePassed) { bTxDone = FALSE; timePassed = FALSE; uart.printf("\r\n Final Packet %d",(uint32_t)u16SentPackets); if(u16SentPackets == u16TotalPackets) { uart.printf( "\r\n PER Tx DONE \r\n"); uart.printf( "\r\n\r\n Press [enter] to go back to the PER Tx test menu "); perTxState = gPerTxStateIdle_c; AppDelayTmr.stop(); timePassed = FALSE; } else { gAppTxPacket->u8DataLength = 8; (void)MCPSDataRequest(gAppTxPacket); u16SentPackets++; Thread::wait(miliSecDelay); } } if(evDataFromUART && gu8UartData == ' ') { uart.printf("\r\n\r\n-Test interrupted by user. Press [ENTER] to continue\r\n\r\n"); perTxState = gPerTxStateIdle_c; } break; case gPerTxStateIdle_c: if((evDataFromUART) && ('\r' == gu8UartData)) { perTxState = gPerTxStateInit_c; evDataFromUART = FALSE; SelfNotificationEvent(); } break; default: break; } return bBackFlag; } /************************************************************************************ * * PER Handler for board that is performing RX * ************************************************************************************/ bool_t PacketErrorRateRx(void) { static uint16_t u16ReceivedPackets; static uint16_t u16PacketsIndex; static uint16_t u16TotalPackets; static uint16_t u16FinalPacketsCount; static uint32_t u32RssiSum; static uint8_t u8AverageRssi; uint8_t u8TempRssivalue; bool_t bBackFlag = FALSE; if(evTestParameters) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(perRxState) { case gPerRxStateInit_c: u16TotalPackets = 0; u16ReceivedPackets = 0; u16PacketsIndex = 0; u32RssiSum = 0; PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8PerRxTestMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; perRxState = gPerRxWaitStartTest_c; break; case gPerRxWaitStartTest_c: if(evDataFromUART) { if(' ' == gu8UartData) { uart.printf("\f\n\rPER Test Rx Running\r\n\r\n"); SetRadioRxOnNoTimeOut(); shortCutsEnabled = FALSE; perRxState = gPerRxStateStartTest_c; } else if('p' == gu8UartData) { bBackFlag = TRUE; } evDataFromUART = FALSE; } break; case gPerRxStateStartTest_c: if(bRxDone) { if (gAppRxPacket->rxStatus == rxSuccessStatus_c) { if(stringComp((uint8_t*)"SMAC PER Demo",&gAppRxPacket->smacPdu.smacPdu[4],13)) { u16TotalPackets = ((uint16_t)gAppRxPacket->smacPdu.smacPdu[0] <<8) + gAppRxPacket->smacPdu.smacPdu[1]; u16PacketsIndex = ((uint16_t)gAppRxPacket->smacPdu.smacPdu[2] <<8) + gAppRxPacket->smacPdu.smacPdu[3]; u16ReceivedPackets++; u8TempRssivalue= u8LastRxRssiValue; //@CMA, Conn Test. New line u32RssiSum += u8TempRssivalue; u8AverageRssi = (uint8_t)(u32RssiSum/u16ReceivedPackets); uart.printf("Packet %d . Packet index: %d . Rssi during RX: - %d\r\n",(uint32_t)u16ReceivedPackets, (uint32_t)u16PacketsIndex, (uint32_t)u8LastRxRssiValue); if(u16PacketsIndex == u16TotalPackets) { u16FinalPacketsCount = 0; perRxState = gPerRxStateReceivingLastFrames_c; } } else if(stringComp((uint8_t*)"DONE",&gAppRxPacket->smacPdu.smacPdu[4],4)) { u16FinalPacketsCount = 0; perRxState = gPerRxStateReceivingLastFrames_c; } } else { if(u16TotalPackets) { u16PacketsIndex++; if(u16PacketsIndex == u16TotalPackets) { u16FinalPacketsCount = 0; perRxState = gPerRxStateReceivingLastFrames_c; } } } SetRadioRxOnNoTimeOut(); } if(evDataFromUART) { if(' ' == gu8UartData) { (void)MLMERXDisableRequest(); uart.printf("\r\nAverage Rssi during PER: -"); uart.printf("%d",(uint32_t)u8AverageRssi); uart.printf(" dBm\r\n"); uart.printf( "\n\rPER Test Rx Stopped\r\n\r\n"); PrintPerRxFinalLine(u16ReceivedPackets,u16TotalPackets); perRxState = gPerRxStateIdle_c; } evDataFromUART = FALSE; } break; case gPerRxStateReceivingLastFrames_c: if(bRxDone) { u16FinalPacketsCount++; if(mTotalFinalFrames_c == u16FinalPacketsCount) { uart.printf("\r\nAverage Rssi during PER: -"); uart.printf("%d",(uint32_t)u8AverageRssi); uart.printf(" dBm\r\n"); uart.printf( "\n\rPER Test Finished\r\n\r\n"); PrintPerRxFinalLine(u16ReceivedPackets,u16TotalPackets); perRxState = gPerRxStateIdle_c; } else { SetRadioRxOnNoTimeOut(); } } if(evDataFromUART) { if(' ' == gu8UartData) { (void)MLMERXDisableRequest(); uart.printf("\r\nAverage Rssi during PER: -"); uart.printf("%d",(uint32_t)u8AverageRssi); uart.printf(" dBm\r\n"); uart.printf( "\n\rPER Test Rx Stopped\r\n\r\n"); PrintPerRxFinalLine(u16ReceivedPackets,u16TotalPackets); perRxState = gPerRxStateIdle_c; } evDataFromUART = FALSE; } break; case gPerRxStateIdle_c: if((evDataFromUART) && ('\r' == gu8UartData)) { perRxState = gPerRxStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; break; default: break; } return bBackFlag; } /************************************************************************************ * * Range Test Handler for board that is performing TX * ************************************************************************************/ bool_t RangeTx(void) { bool_t bBackFlag = FALSE; static uint32_t u32RSSISum; static uint16_t u16ReceivedPackets; static uint16_t u16PacketsDropped; uint8_t u8AverageRSSI; uint8_t u8CurrentRSSI; if(evTestParameters) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(rangeTxState) { case gRangeTxStateInit_c: u32RSSISum = 0; u16ReceivedPackets = 0; u16PacketsDropped = 0; PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8RangeTxTestMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; rangeTxState = gRangeTxWaitStartTest_c; break; case gRangeTxWaitStartTest_c: if(evDataFromUART) { if(' ' == gu8UartData) { shortCutsEnabled = FALSE; uart.printf( "\f\r\nRange Test Tx Running\r\n"); rangeTxState = gRangeTxStateStartTest_c; Thread::wait(200); } else if('p' == gu8UartData) { bBackFlag = TRUE; } evDataFromUART = FALSE; } break; case gRangeTxStateStartTest_c: if(!timePassed) //waiting 200 ms break; timePassed = FALSE; bTxDone = FALSE; gAppTxPacket->u8DataLength = 16; gAppTxPacket->smacPdu.smacPdu[0] = 0; FLib_MemCpy(&(gAppTxPacket->smacPdu.smacPdu[1]), (void*)"SMAC Range Demo",15); MLMERXDisableRequest(); //RangeTestTmr.stop(); //@CMA, Conn Test. Stop Rx timer (void)MCPSDataRequest(gAppTxPacket); rangeTxState = gRangeTxStateRunningTest_c; break; case gRangeTxStateRunningTest_c: if(bTxDone) { RangeTestTmr.attach_us(RangeTest_Timer_CallBack, 80000); //@CMA, Conn Test. Start Timer SetRadioRxOnNoTimeOut(); rangeTxState = gRangeTxStatePrintTestResults_c; } break; case gRangeTxStatePrintTestResults_c: if(bRxDone) { if(gAppRxPacket->rxStatus == rxSuccessStatus_c) { if(stringComp((uint8_t*)"SMAC Range Demo",&gAppRxPacket->smacPdu.smacPdu[1],15)) { u8CurrentRSSI = (gAppRxPacket->smacPdu.smacPdu[0]); u32RSSISum += u8CurrentRSSI; u16ReceivedPackets++; u8AverageRSSI = (uint8_t)(u32RSSISum/u16ReceivedPackets); uart.printf( "\r\n RSSI = -"); uart.printf("%d", (uint32_t)u8CurrentRSSI); uart.printf(" dBm"); } else { RangeTestTmr.attach_us(RangeTest_Timer_CallBack, 80000); //@CMA, Conn Test. Start Timer SetRadioRxOnNoTimeOut(); } } else { u16PacketsDropped++; uart.printf( "\r\nPacket Dropped"); bRxDone= FALSE; //@CMA, Conn Test. Added } if(evDataFromUART && (' ' == gu8UartData)) { uart.printf( "\n\r\n\rRange Test Tx Stopped\r\n\r\n"); u8AverageRSSI = (uint8_t)(u32RSSISum/u16ReceivedPackets); uart.printf( "Average RSSI -"); uart.printf("%d", (uint32_t)u8AverageRSSI); uart.printf(" dBm"); uart.printf( "\r\nPackets dropped "); uart.printf("%d", (uint32_t)u16PacketsDropped); uart.printf( "\r\n\r\n Press [enter] to go back to the Range Tx test menu"); rangeTxState = gRangeTxStateIdle_c; (void)MLMERXDisableRequest(); AppDelayTmr.stop(); timePassed = FALSE; } else { rangeTxState = gRangeTxStateStartTest_c; Thread::wait(200); } evDataFromUART = FALSE; } break; case gRangeTxStateIdle_c: if((evDataFromUART) && ('\r' == gu8UartData)) { rangeTxState = gRangeTxStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; break; default: break; } return bBackFlag; } /************************************************************************************ * * Range Test Handler for board that is performing RX * ************************************************************************************/ bool_t RangeRx(void) { bool_t bBackFlag = FALSE; static uint32_t u32RSSISum; static uint16_t u16ReceivedPackets; uint8_t u8AverageRSSI, u8TempRSSIvalue; uint8_t u8CurrentRSSI; if(evTestParameters) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(rangeRxState) { case gRangeRxStateInit_c: u32RSSISum = 0; u16ReceivedPackets = 0; PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8RangeRxTestMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; rangeRxState = gRangeRxWaitStartTest_c; break; case gRangeRxWaitStartTest_c: if(evDataFromUART) { if(' ' == gu8UartData) { shortCutsEnabled = FALSE; uart.printf( "\f\r\nRange Test Rx Running\r\n"); rangeRxState = gRangeRxStateStartTest_c; } else if('p' == gu8UartData) { bBackFlag = TRUE; } evDataFromUART = FALSE; SelfNotificationEvent(); } break; case gRangeRxStateStartTest_c: SetRadioRxOnNoTimeOut(); rangeRxState = gRangeRxStateRunningTest_c; break; case gRangeRxStateRunningTest_c: if(evDataFromUART && (' ' == gu8UartData)) { (void)MLMERXDisableRequest(); uart.printf( "\n\r\n\rRange Test Rx Stopped\r\n\r\n"); u8AverageRSSI = (uint8_t)(u32RSSISum/u16ReceivedPackets); uart.printf( "Average RSSI "); if(u8AverageRSSI != 0) { uart.printf("-"); } uart.printf("%d", (uint32_t)u8AverageRSSI); uart.printf(" dBm"); uart.printf( "\r\n\r\n Press [enter] to go back to the Range Rx test menu"); rangeRxState = gRangeRxStateIdle_c; } evDataFromUART = FALSE; if(bRxDone) { if(gAppRxPacket->rxStatus == rxSuccessStatus_c) { if(stringComp((uint8_t*)"SMAC Range Demo",&gAppRxPacket->smacPdu.smacPdu[1],15)) { bRxDone = FALSE; Thread::wait(4); } else { SetRadioRxOnNoTimeOut(); } } else { SetRadioRxOnNoTimeOut(); } } if(timePassed) { timePassed = FALSE; bTxDone = FALSE; u8TempRSSIvalue= u8LastRxRssiValue; gAppTxPacket->smacPdu.smacPdu[0] = u8TempRSSIvalue; FLib_MemCpy(&(gAppTxPacket->smacPdu.smacPdu[1]), (void *)"SMAC Range Demo",15); gAppTxPacket->u8DataLength = 16; (void)MCPSDataRequest(gAppTxPacket); rangeRxState = gRangeRxStatePrintTestResults_c; } break; case gRangeRxStatePrintTestResults_c: if(bTxDone) { u8CurrentRSSI= u8LastRxRssiValue; u32RSSISum += u8CurrentRSSI; u16ReceivedPackets++; u8AverageRSSI = (uint8_t)(u32RSSISum/u16ReceivedPackets); uart.printf( "\r\n RSSI = -"); uart.printf("%d", (uint32_t)u8CurrentRSSI); uart.printf(" dBm"); rangeRxState = gRangeRxStateStartTest_c; SelfNotificationEvent(); } break; case gRangeRxStateIdle_c: if((evDataFromUART) && ('\r' == gu8UartData)) { rangeRxState = gRangeRxStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; break; default: break; } return bBackFlag; } /************************************************************************************ * * Handler for viewing/modifying XCVR registers * ************************************************************************************/ bool_t EditRegisters(void) { bool_t bBackFlag = FALSE; if(evTestParameters) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(eRState) { case gERStateInit_c: PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8RadioRegistersEditMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; eRState = gERWaitSelection_c; break; case gERWaitSelection_c: if(evDataFromUART) { #if CT_Feature_Direct_Registers if('1' == gu8UartData) { bIsRegisterDirect = TRUE; oRState = gORStateInit_c; eRState = gERStateOverrideReg_c; SelfNotificationEvent(); } else if('2' == gu8UartData) { bIsRegisterDirect = TRUE; rRState = gRRStateInit_c; eRState = gERStateReadReg_c; SelfNotificationEvent(); } #if CT_Feature_Indirect_Registers else if('3' == gu8UartData) { bIsRegisterDirect = FALSE; oRState = gORStateInit_c; eRState = gERStateOverrideReg_c; SelfNotificationEvent(); } else if('4' == gu8UartData) { bIsRegisterDirect = FALSE; rRState = gRRStateInit_c; eRState = gERStateReadReg_c; SelfNotificationEvent(); } else if('5' == gu8UartData) { dRState = gDRStateInit_c; eRState = gERStateDumpAllRegs_c; SelfNotificationEvent(); } #else else if('3' == gu8UartData) { dRState = gDRStateInit_c; eRState = gERStateDumpAllRegs_c; SelfNotificationEvent(); } #endif else #endif if('p' == gu8UartData) { bBackFlag = TRUE; } evDataFromUART = FALSE; } break; case gERStateOverrideReg_c: if(OverrideRegisters()) { eRState = gERStateInit_c; SelfNotificationEvent(); } break; case gERStateReadReg_c: if(ReadRegisters()) { eRState = gERStateInit_c; SelfNotificationEvent(); } break; case gERStateDumpAllRegs_c: if(DumpRegisters()) { eRState = gERStateInit_c; SelfNotificationEvent(); } break; default: break; } return bBackFlag; } /************************************************************************************ * * Dump registers * ************************************************************************************/ bool_t DumpRegisters(void) { bool_t bBackFlag = FALSE; switch(dRState) { case gDRStateInit_c: uart.printf( "\f\r\rDump Registers\r\n"); uart.printf( "\r\n-Press [space] to dump registers\r\n"); uart.printf( "\r\n-Press [p] Previous Menu\r\n"); shortCutsEnabled = FALSE; dRState = gDRStateDumpRegs_c; SelfNotificationEvent(); break; case gDRStateDumpRegs_c: if(evDataFromUART){ if(gu8UartData == 'p') { bBackFlag = TRUE; } else if (gu8UartData == ' ') { uart.printf( "\r\n -Dumping registers... \r\n"); const registerLimits_t* interval = registerIntervals; while(!((*interval).regStart == 0 && (*interval).regEnd == 0)) { uart.printf( "\r\n -Access type: "); if( (*interval).bIsRegisterDirect ) uart.printf("direct\r\n"); else uart.printf("indirect\r\n"); bIsRegisterDirect = (*interval).bIsRegisterDirect; ReadRFRegs((*interval).regStart, (*interval).regEnd); interval++; } dRState = gDRStateInit_c; SelfNotificationEvent(); } } evDataFromUART = FALSE; break; default: break; } return bBackFlag; } /************************************************************************************ * * Read and print register values with addresses from u8RegStartAddress * to u8RegStopAddress * ************************************************************************************/ void ReadRFRegs(registerAddressSize_t rasRegStartAddress, registerAddressSize_t rasRegStopAddress) { static uint16_t rasRegAddress; registerSize_t rsRegValue; uart.printf( " --------------------------------------- "); for(rasRegAddress = rasRegStartAddress; rasRegAddress <= rasRegStopAddress; rasRegAddress+=(gRegisterSize_c)) { uart.printf( "\r\n| Address : 0x"); uart.printf("%x", (uint8_t*)&rasRegAddress); aspTestRequestMsg.msgType = aspMsgTypeXcvrReadReq_c; aspTestRequestMsg.msgData.aspXcvrData.addr = (uint16_t)rasRegAddress; aspTestRequestMsg.msgData.aspXcvrData.len = gRegisterSize_c; aspTestRequestMsg.msgData.aspXcvrData.mode = !bIsRegisterDirect; APP_ASP_SapHandler(&aspTestRequestMsg, 0); rsRegValue = *((registerSize_t*)aspTestRequestMsg.msgData.aspXcvrData.data); uart.printf( " Data value : 0x"); uart.printf("%x", (uint8_t*)&rsRegValue); uart.printf( " |"); } uart.printf( "\r\n --------------------------------------- \r\n"); } /************************************************************************************ * * Read register * ************************************************************************************/ bool_t ReadRegisters(void) { bool_t bBackFlag = FALSE; static uint8_t au8RxString[5]; static uint8_t u8Index; static registerAddressSize_t rasRegAddress; static registerSize_t rsRegValue; static char auxToPrint[2]; switch(rRState) { case gRRStateInit_c: uart.printf( "\f\r\rRead Registers\r\n"); uart.printf( "\r\n-Press [p] Previous Menu\r\n"); shortCutsEnabled = FALSE; rRState = gRRStateStart_c; SelfNotificationEvent(); break; case gRRStateStart_c: uart.printf( "\r\n -write the Register address in Hex and [enter]: 0x"); u8Index = 0; rRState = gRRWaitForTheAddress_c; break; case gRRWaitForTheAddress_c: if(evDataFromUART) { if((!isAsciiHex(gu8UartData)) && ('\r' != gu8UartData)) { if('p' == gu8UartData) { bBackFlag = TRUE; } else { uart.printf( "\r\n -Invalid Character!! "); rRState = gRRStateStart_c; SelfNotificationEvent(); } } else if((gRegisterAddressASCII_c == u8Index) && ('\r' != gu8UartData)) { uart.printf( "\r\n -Value out of Range!! "); rRState = gRRStateStart_c; SelfNotificationEvent(); } else if(isAsciiHex(gu8UartData)) { au8RxString[u8Index++] = gu8UartData; auxToPrint[0] = gu8UartData; auxToPrint[1] = '\0'; uart.printf( auxToPrint); } else { au8RxString[u8Index] = 0; rasRegAddress = (registerAddressSize_t)HexString2Dec(au8RxString); aspTestRequestMsg.msgType = aspMsgTypeXcvrReadReq_c; aspTestRequestMsg.msgData.aspXcvrData.addr = (uint16_t)rasRegAddress; aspTestRequestMsg.msgData.aspXcvrData.len = gRegisterSize_c; aspTestRequestMsg.msgData.aspXcvrData.mode = !bIsRegisterDirect; APP_ASP_SapHandler(&aspTestRequestMsg, 0); rsRegValue = *((registerSize_t*)aspTestRequestMsg.msgData.aspXcvrData.data); uart.printf( "\r\n -Register value : 0x"); uart.printf("%x", (uint8_t*)&rsRegValue); uart.printf( "\r\n"); rRState = gRRStateStart_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; default: break; } return bBackFlag; } /************************************************************************************ * * Override Register * ************************************************************************************/ bool_t OverrideRegisters(void) { bool_t bBackFlag = FALSE; static uint8_t au8RxString[5]; static uint8_t u8Index; static registerAddressSize_t rasRegAddress; static registerSize_t rsRegValue; static char auxToPrint[2]; switch(oRState) { case gORStateInit_c: uart.printf("\f\r\nWrite Registers\r\n"); uart.printf("\r\n-Press [p] Previous Menu\r\n"); shortCutsEnabled = FALSE; oRState = gORStateStart_c; SelfNotificationEvent(); break; case gORStateStart_c: uart.printf("\r\n -write the Register address in Hex and [enter]: 0x"); u8Index = 0; oRState = gORWaitForTheAddress_c; break; case gORWaitForTheAddress_c: if(evDataFromUART){ if((!isAsciiHex(gu8UartData)) && ('\r' != gu8UartData)) { if('p' == gu8UartData) { bBackFlag = TRUE; } else { uart.printf("\r\n -Invalid Character!! "); oRState = gORStateStart_c; SelfNotificationEvent(); } } else if((gRegisterAddressASCII_c == u8Index) && ('\r' != gu8UartData)) { uart.printf("\r\n -Value out of Range!! "); oRState = gORStateStart_c; SelfNotificationEvent(); } else if(isAsciiHex(gu8UartData)) { au8RxString[u8Index++] = gu8UartData; auxToPrint[0] = gu8UartData; auxToPrint[1] = '\0'; uart.printf(auxToPrint); } else { au8RxString[u8Index] = 0; rasRegAddress = (registerAddressSize_t)HexString2Dec(au8RxString); uart.printf("\r\n -write the Register value to override in Hex and [enter]: 0x"); u8Index = 0; oRState = gORWaitForTheValue_c; } evDataFromUART = FALSE; } break; case gORWaitForTheValue_c: if(evDataFromUART) { if((!isAsciiHex(gu8UartData)) && ('\r' != gu8UartData)) { if('p' == gu8UartData) { bBackFlag = TRUE; } else { uart.printf("\r\n -Invalid Character!! "); oRState = gORStateStart_c; SelfNotificationEvent(); } } else if((2 == u8Index) && ('\r' != gu8UartData)) { uart.printf("\r\n -Value out of Range!! "); oRState = gORStateStart_c; SelfNotificationEvent(); } else if(isAsciiHex(gu8UartData)) { au8RxString[u8Index++] = gu8UartData; auxToPrint[0] = gu8UartData; auxToPrint[1] = '\0'; uart.printf(auxToPrint); } else { au8RxString[u8Index] = 0; rsRegValue = (registerSize_t)HexString2Dec(au8RxString); aspTestRequestMsg.msgType = aspMsgTypeXcvrWriteReq_c; aspTestRequestMsg.msgData.aspXcvrData.addr = (uint16_t)rasRegAddress; aspTestRequestMsg.msgData.aspXcvrData.len = gRegisterAddress_c; aspTestRequestMsg.msgData.aspXcvrData.mode = !bIsRegisterDirect; FLib_MemCpy(aspTestRequestMsg.msgData.aspXcvrData.data, &rsRegValue, gRegisterSize_c); APP_ASP_SapHandler(&aspTestRequestMsg, 0); uart.printf("\r\n Register overridden \r\n"); u8Index = 0; oRState = gORStateStart_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; default: break; } return bBackFlag; } /************************************************************************************ * * Handler for Carrier Sense Test and Transmission Control Test * ************************************************************************************/ bool_t CSenseAndTCtrl(void) { bool_t bBackFlag = FALSE; static uint8_t testSelector = 0; if(evTestParameters){ (void)MLMESetChannelRequest(testChannel); #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMEPAOutputAdjust(testPower); PrintTestParameters(TRUE); evTestParameters = FALSE; } switch(cstcState) { case gCsTcStateInit_c: TestMode(gTestModeForceIdle_c); PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8RadioCSTCSelectMenu, mAppSer); PrintTestParameters(FALSE); shortCutsEnabled = TRUE; bTxDone = FALSE; bScanDone = FALSE; timePassed = FALSE; cstcState = gCsTcStateSelectTest_c; break; case gCsTcStateSelectTest_c: if(evDataFromUART) { if('1' == gu8UartData) { cstcState = gCsTcStateCarrierSenseStart_c; testSelector = 1; SelfNotificationEvent(); } else if ('2' == gu8UartData) { cstcState = gCsTcStateTransmissionControlStart_c; testSelector = 2; SelfNotificationEvent(); } else if( 'p' == gu8UartData) { cstcState = gCsTcStateInit_c; testSelector = 0; bBackFlag = TRUE; } evDataFromUART = FALSE; } break; default: if(testSelector == 1) CarrierSenseHandler(); else if(testSelector == 2) TransmissionControlHandler(); break; } return bBackFlag; } /************************************************************************************ * * Handler for Transmission Control Test called by above function * ************************************************************************************/ void TransmissionControlHandler(void) { const uint16_t u16TotalPacketsOptions[] = {1,25,100,500,1000,2000,5000,10000,65535}; static uint16_t u16TotalPackets; static uint16_t u16PacketCounter = 0; static uint16_t miliSecDelay = 0; static phyTime_t startTime; int8_t fillIndex = 0; uint8_t* smacPduPtr; uint32_t totalTimeMs; switch(cstcState) { case gCsTcStateTransmissionControlStart_c: PrintMenu(cu8ShortCutsBar, mAppSer); PrintMenu(cu8CsTcTestMenu, mAppSer); PrintTestParameters(FALSE); miliSecDelay = 0; u16TotalPackets = 0; u16PacketCounter = 0; fillIndex = testPayloadLen / gPrbs9BufferLength_c; while(fillIndex > 0) { fillIndex--; smacPduPtr = gAppTxPacket->smacPdu.smacPdu + fillIndex * gPrbs9BufferLength_c; FLib_MemCpy(smacPduPtr, u8Prbs9Buffer, gPrbs9BufferLength_c); } smacPduPtr = gAppTxPacket->smacPdu.smacPdu + ((testPayloadLen / gPrbs9BufferLength_c)*gPrbs9BufferLength_c); FLib_MemCpy(smacPduPtr, u8Prbs9Buffer, (testPayloadLen % gPrbs9BufferLength_c)); gAppTxPacket->u8DataLength = testPayloadLen; cstcState = gCsTcStateTransmissionControlSelectNumOfPackets_c; break; case gCsTcStateTransmissionControlSelectNumOfPackets_c: if(evDataFromUART) { if((gu8UartData >= '0') && (gu8UartData <= '8')) { u16TotalPackets = u16TotalPacketsOptions[gu8UartData - '0']; cstcState = gCsTcStateTransmissionControlSelectInterpacketDelay_c; uart.printf("\r\n\r\n Please type InterPacket delay in miliseconds and press [ENTER]"); uart.printf("\r\n(During test, exit by pressing [SPACE])\r\n\r\n"); SelfNotificationEvent(); } else if('p' == gu8UartData) { cstcState = gCsTcStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; case gCsTcStateTransmissionControlSelectInterpacketDelay_c: if(evDataFromUART) { if(gu8UartData == '\r' && miliSecDelay != 0) { cstcState = gCsTcStateTransmissionControlPerformingTest_c; startTime = GetTimestampUS(); (void)MLMEScanRequest(testChannel); } else if((gu8UartData >= '0') && (gu8UartData <='9')) { miliSecDelay = miliSecDelay*10 + (gu8UartData - '0'); uart.printf("%d",(uint32_t)(gu8UartData - '0')); } else if('p' == gu8UartData) { cstcState = gCsTcStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; case gCsTcStateTransmissionControlPerformingTest_c: if(bScanDone) { bScanDone = FALSE; (void)MCPSDataRequest(gAppTxPacket); } if(bTxDone) { bTxDone = FALSE; u16PacketCounter++; uart.printf("\r\n\tPacket number: "); uart.printf("%d", (uint32_t)(u16PacketCounter)); uart.printf("; RSSI value: -"); uart.printf("%d",(uint32_t)au8ScanResults[testChannel]); uart.printf(" dBm\r\n"); if(u16PacketCounter < u16TotalPackets) { totalTimeMs = (uint32_t)(GetTimestampUS() - startTime); totalTimeMs -= GetTransmissionTime(testPayloadLen, crtBitrate); totalTimeMs = (totalTimeMs % 1000 < 500) ? totalTimeMs/1000 : (totalTimeMs/1000)+1; if(totalTimeMs > miliSecDelay) { uart.printf( " Overhead + Transmission + ED = ~"); uart.printf("%d", totalTimeMs); uart.printf("ms\r\n Interpacket delay too small (Press [ENTER] to continue)\r\n"); cstcState = gCsTcStateTransmissionControlEndTest_c; SelfNotificationEvent(); break; } Thread::wait(miliSecDelay - totalTimeMs); } else { uart.printf("\r\n\r\nFinished transmitting "); uart.printf("%d", (uint32_t)u16TotalPackets); uart.printf(" packets!\r\n\r\n"); uart.printf("\r\n -Press [ENTER] to end Transmission Control Test"); cstcState = gCsTcStateTransmissionControlEndTest_c; } } if(timePassed) { timePassed = FALSE; startTime = GetTimestampUS(); (void)MLMEScanRequest(testChannel); } if(evDataFromUART && gu8UartData == ' ') { uart.printf("\r\n\r\n-Test interrupted by user. Press [ENTER] to continue\r\n\r\n"); cstcState = gCsTcStateTransmissionControlEndTest_c; } break; case gCsTcStateTransmissionControlEndTest_c: if(evDataFromUART && gu8UartData == '\r') { cstcState = gCsTcStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; break; } } /************************************************************************************ * * Handler for Carrier Sense Test * ************************************************************************************/ void CarrierSenseHandler(void) { int8_t fillIndex = 0; uint8_t* smacPduPtr; switch(cstcState) { case gCsTcStateCarrierSenseStart_c: #if CT_Feature_Calibration if( gMode1Bitrate_c == crtBitrate ) { (void)MLMESetAdditionalRFOffset(gOffsetIncrement + 30); } else { (void)MLMESetAdditionalRFOffset(gOffsetIncrement + 60); } #endif (void)MLMESetChannelRequest(testChannel); uart.printf( "\r\n\r\n Press [SPACE] to begin/interrupt test"); uart.printf( "\r\n Press [p] to return to previous menu"); // PrintTestParameters(FALSE); shortCutsEnabled = FALSE; uart.printf("\r\n"); fillIndex = testPayloadLen / gPrbs9BufferLength_c; while(fillIndex > 0) { fillIndex--; smacPduPtr = gAppTxPacket->smacPdu.smacPdu + fillIndex * gPrbs9BufferLength_c; FLib_MemCpy(smacPduPtr, u8Prbs9Buffer, gPrbs9BufferLength_c); } smacPduPtr = gAppTxPacket->smacPdu.smacPdu + ((testPayloadLen / gPrbs9BufferLength_c)*gPrbs9BufferLength_c); FLib_MemCpy(smacPduPtr, u8Prbs9Buffer, (testPayloadLen % gPrbs9BufferLength_c)); gAppTxPacket->u8DataLength = testPayloadLen; cstcState = gCsTcStateCarrierSenseSelectType_c; break; case gCsTcStateCarrierSenseSelectType_c: if(evDataFromUART) { if(' ' == gu8UartData) { cstcState = gCsTcStateCarrierSensePerformingTest_c; (void)MLMEScanRequest(testChannel); } else if ('p' == gu8UartData) { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); cstcState = gCsTcStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; } break; case gCsTcStateCarrierSensePerformingTest_c: if(bScanDone) { bScanDone = FALSE; uart.printf( "\r\n\tSampling done. RSSI value: -"); uart.printf("%d", (uint32_t) au8ScanResults[testChannel]); uart.printf( "dBm"); if(au8ScanResults[testChannel] > ccaThresh) { (void)MCPSDataRequest(gAppTxPacket); } else { (void)MLMEScanRequest(testChannel); } } if(bTxDone) { bTxDone = FALSE; uart.printf("\r\n Transmission Performed\r\n"); uart.printf("\r\n -Press [ENTER] to end Carrier Sense Test"); cstcState = gCsTcStateCarrierSenseEndTest_c; } if(evDataFromUART && gu8UartData == ' ') { uart.printf("\r\n\r\n-Test interrupted by user. Press [ENTER] to continue\r\n\r\n"); cstcState = gCsTcStateCarrierSenseEndTest_c; } break; case gCsTcStateCarrierSenseEndTest_c: if(evDataFromUART && gu8UartData == '\r') { #if CT_Feature_Calibration (void)MLMESetAdditionalRFOffset(gOffsetIncrement); #endif (void)MLMESetChannelRequest(testChannel); cstcState = gCsTcStateInit_c; SelfNotificationEvent(); } evDataFromUART = FALSE; break; } } /************************************************************************************ * * Auxiliary Functions * ************************************************************************************/ /**************************************************************************************/ void SetRadioRxOnNoTimeOut(void) { bRxDone = FALSE; gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c; (void)MLMERXEnableRequest(gAppRxPacket, 0); } /**************************************************************************************/ void PrintPerRxFinalLine(uint16_t u16Received, uint16_t u16Total) { uart.printf("Received "); uart.printf("%d",(uint32_t)u16Received); uart.printf(" of "); uart.printf("%d",(uint32_t)u16Total); uart.printf(" packets transmitted \r\n"); uart.printf("\r\n Press [enter] to go back to the Per Rx test menu"); } /************************************************************************************ * * * By employing this function, users can execute a test of the radio. Test mode * implements the following: * -PRBS9 Mode, * -Force_idle, * -Continuos TX without modulation, * -Continuos TX with modulation.(0's,1's and PN patterns) * ************************************************************************************/ smacErrors_t TestMode ( smacTestMode_t mode /*IN: The test mode to start.*/ ) { aspTestRequestMsg.msgType = aspMsgTypeTelecTest_c; #if(TRUE == smacParametersValidation_d) if(gMaxTestMode_c <= mode) { return gErrorOutOfRange_c; } #endif if(gTestModeForceIdle_c == mode) { aspTestRequestMsg.msgData.aspTelecTest.mode = gTestForceIdle_c; } else if(gTestModeContinuousTxModulated_c == mode) { if(contTxModBitValue==gContTxModSelectOnes_c) { aspTestRequestMsg.msgData.aspTelecTest.mode = gTestContinuousTxModOne_c; } else if(contTxModBitValue == gContTxModSelectZeros_c) { aspTestRequestMsg.msgData.aspTelecTest.mode = gTestContinuousTxModZero_c; } else if(contTxModBitValue == gContTxModSelectPN9_c) { #ifdef gPHY_802_15_4g_d aspTestRequestMsg.msgData.aspTelecTest.mode = gTestContinuousTxContPN9_c; #else aspTestRequestMsg.msgData.aspTelecTest.mode = gTestPulseTxPrbs9_c; #endif } } else if(gTestModeContinuousTxUnmodulated_c == mode) { aspTestRequestMsg.msgData.aspTelecTest.mode = gTestContinuousTxNoMod_c; } else if(gTestModeContinuousRxBER_c == mode) { aspTestRequestMsg.msgData.aspTelecTest.mode = gTestContinuousRx_c; } else if(gTestModePRBS9_c == mode) { /*Set Data Mode*/ gAppTxPacket->u8DataLength = gPrbs9BufferLength_c; FLib_MemCpy(gAppTxPacket->smacPdu.smacPdu, u8Prbs9Buffer, gPrbs9BufferLength_c); PacketHandler_Prbs9(); } if(gTestModePRBS9_c != mode) (void)APP_ASP_SapHandler(&aspTestRequestMsg, 0); return gErrorNoError_c; } /************************************************************************************ * PacketHandler_Prbs9 * * This function sends OTA the content of a PRBS9 polynomial of 65 bytes of payload. * * ************************************************************************************/ void PacketHandler_Prbs9(void) { smacErrors_t err; /*@CMA, Need to set Smac to Idle in order to get PRBS9 to work after a second try on the Conn Test menu*/ (void)MLMERXDisableRequest(); (void)MLMETXDisableRequest(); err = MCPSDataRequest(gAppTxPacket); if(err != gErrorNoError_c) { failedPRBS9 = TRUE; SelfNotificationEvent(); //in case data isn't sent, no confirm event will fire. //this way we need to make sure the application will not freeze. } } /***************************************************************************** * UartRxCallBack function * * Interface assumptions: * This callback is triggered when a new byte is received over the UART * * Return Value: * None *****************************************************************************/ void UartRxCallBack(void * param) { uint16_t readBytes; gu8UartData = uart.getc(); gTaskEventFlags |= gUART_RX_EVENT_c; } /*@CMA, Conn Test. Range Test CallBack*/ void RangeTest_Timer_CallBack () { gTaskEventFlags |= gRangeTest_EVENT_c; } /************************************************************************************ * * Increments channel on the ED Confirm event and fires a new ED measurement request * ************************************************************************************/ void IncrementChannelOnEdEvent() { bScanDone = FALSE; smacErrors_t err; if (ChannelToScan <= gMaxChannel_c) { err = MLMEScanRequest((channels_t)ChannelToScan); if(err == gErrorNoError_c) ChannelToScan++; //Increment channel to scan } else { bScanDone = TRUE; //PRINT ALL CHANNEL RESULTS Thread::wait(300); //Add delay between channel scanning series. } } /*********************************************************************** *********************Utilities Software******************************** ************************************************************************/ bool_t stringComp(uint8_t * au8leftString, uint8_t * au8RightString, uint8_t bytesToCompare) { do { }while((*au8leftString++ == *au8RightString++) && --bytesToCompare); return(0 == bytesToCompare); } uint32_t HexString2Dec(uint8_t* au8String) { uint8_t u8LocIndex=0; uint8_t u8LocIndex2=0; uint32_t u32DecValue = 0; while(au8String[u8LocIndex]){ u8LocIndex++; } while(u8LocIndex--){ if((au8String[u8LocIndex] >= '0') && (au8String[u8LocIndex] <= '9')) u32DecValue |= ((uint32_t)(au8String[u8LocIndex] - '0'))<<(u8LocIndex2*4); else if((au8String[u8LocIndex] >= 'A') && (au8String[u8LocIndex] <= 'F')){ u32DecValue |= ((uint32_t)(au8String[u8LocIndex] - 'A' + 0x0A))<<(u8LocIndex2*4); }else{ u32DecValue |= ((uint32_t)(au8String[u8LocIndex] - 'a' + 0x0A))<<(u8LocIndex2*4); } u8LocIndex2++; } return u32DecValue; } static void DelayTimeElapsed() { timePassed = TRUE; gTaskEventFlags |= gTimePassed_EVENT_c; } /*********************************************************************************** * * PrintMenu * ************************************************************************************/ void PrintMenu(char * const pu8Menu[], uint8_t port) { uint8_t u8Index = 0; (void)port; while(pu8Menu[u8Index]){ uart.printf(pu8Menu[u8Index]); u8Index++; } } /*********************************************************************** ************************************************************************/ /************************************************************************************ * * PrintTestParameters * ************************************************************************************/ void PrintTestParameters(bool_t bEraseLine) { uint8_t u8lineLen = 63; uint8_t u8Index; if(bEraseLine) { for(u8Index = 0;u8Index<u8lineLen;u8Index++) { uart.printf("\b"); } } uart.printf("Mode "); if(mTxOperation_c == testOpMode) { uart.printf("Tx"); } else { uart.printf("Rx"); } uart.printf(", Channel "); uart.printf("%d", (uint32_t)testChannel); uart.printf(", Power "); uart.printf("%d",(uint32_t)testPower); uart.printf(", Payload "); uart.printf("%d", (uint32_t)testPayloadLen); uart.printf(", CCA Thresh "); if(ccaThresh != 0) { uart.printf("-"); } uart.printf("%d", (uint32_t)ccaThresh); uart.printf("dBm"); uart.printf(" >"); } /*****************************************************************************/ int main() { mainTask = new Thread(main_task); while(1) { } return 0; }