Smartphone app control stepper motors via bluetooth low energy(BLE) on stm32F401RE x IHM02A1 x IDB05A1 V2 .
Dependencies: BLE_API X_NUCLEO_IDB0XA1 X_NUCLEO_IHM02A1 mbed
Fork of BLE_LED_IDB0XA1_demo by
main.cpp
- Committer:
- barry210110
- Date:
- 2018-02-01
- Revision:
- 7:126b141a8c86
- Parent:
- 3:e0efdb741bd4
- Child:
- 8:ef9b37e2464f
- Child:
- 9:66938f196868
File content as of revision 7:126b141a8c86:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Includes ------------------------------------------------------------------*/ /* Helper header files. */ #include "DevSPI.h" void call(); /* Expansion Board specific header files. */ #include "XNucleoIHM02A1.h" #include "mbed.h" #include "ble/BLE.h" #include "LEDService.h" #include "BlueNRGDevice.h" int temp,add ; /* Definitions ---------------------------------------------------------------*/ /* Number of movements per revolution. */ #define MPR_1 4 /* Number of steps. */ #define STEPS_1 (400 * 128) /* 1 revolution given a 400 steps motor configured at 1/128 microstep mode. */ #define STEPS_2 (STEPS_1 * 2) /* Delay in milliseconds. */ #define DELAY_1 1000 #define DELAY_2 2000 #define DELAY_3 5000 /* Variables -----------------------------------------------------------------*/ /* Motor Control Expansion Board. */ XNucleoIHM02A1 *x_nucleo_ihm02a1; /* Initialization parameters of the motors connected to the expansion board. */ L6470_init_t init[L6470DAISYCHAINSIZE] = { /* First Motor. */ { 9.0, /* Motor supply voltage in V. */ 400, /* Min number of steps per revolution for the motor. */ 1.7, /* Max motor phase voltage in A. */ 3.06, /* Max motor phase voltage in V. */ 300.0, /* Motor initial speed [step/s]. */ 500.0, /* Motor acceleration [step/s^2] (comment for infinite acceleration mode). */ 500.0, /* Motor deceleration [step/s^2] (comment for infinite deceleration mode). */ 992.0, /* Motor maximum speed [step/s]. */ 0.0, /* Motor minimum speed [step/s]. */ 602.7, /* Motor full-step speed threshold [step/s]. */ 3.06, /* Holding kval [V]. */ 3.06, /* Constant speed kval [V]. */ 3.06, /* Acceleration starting kval [V]. */ 3.06, /* Deceleration starting kval [V]. */ 61.52, /* Intersect speed for bemf compensation curve slope changing [step/s]. */ 392.1569e-6, /* Start slope [s/step]. */ 643.1372e-6, /* Acceleration final slope [s/step]. */ 643.1372e-6, /* Deceleration final slope [s/step]. */ 0, /* Thermal compensation factor (range [0, 15]). */ 3.06 * 1000 * 1.10, /* Ocd threshold [ma] (range [375 ma, 6000 ma]). */ 3.06 * 1000 * 1.00, /* Stall threshold [ma] (range [31.25 ma, 4000 ma]). */ StepperMotor::STEP_MODE_1_128, /* Step mode selection. */ 0xFF, /* Alarm conditions enable. */ 0x2E88 /* Ic configuration. */ }, /* Second Motor. */ { 9.0, /* Motor supply voltage in V. */ 400, /* Min number of steps per revolution for the motor. */ 1.7, /* Max motor phase voltage in A. */ 3.06, /* Max motor phase voltage in V. */ 300.0, /* Motor initial speed [step/s]. */ 500.0, /* Motor acceleration [step/s^2] (comment for infinite acceleration mode). */ 500.0, /* Motor deceleration [step/s^2] (comment for infinite deceleration mode). */ 992.0, /* Motor maximum speed [step/s]. */ 0.0, /* Motor minimum speed [step/s]. */ 602.7, /* Motor full-step speed threshold [step/s]. */ 3.06, /* Holding kval [V]. */ 3.06, /* Constant speed kval [V]. */ 3.06, /* Acceleration starting kval [V]. */ 3.06, /* Deceleration starting kval [V]. */ 61.52, /* Intersect speed for bemf compensation curve slope changing [step/s]. */ 392.1569e-6, /* Start slope [s/step]. */ 643.1372e-6, /* Acceleration final slope [s/step]. */ 643.1372e-6, /* Deceleration final slope [s/step]. */ 0, /* Thermal compensation factor (range [0, 15]). */ 3.06 * 1000 * 1.10, /* Ocd threshold [ma] (range [375 ma, 6000 ma]). */ 3.06 * 1000 * 1.00, /* Stall threshold [ma] (range [31.25 ma, 4000 ma]). */ StepperMotor::STEP_MODE_1_128, /* Step mode selection. */ 0xFF, /* Alarm conditions enable. */ 0x2E88 /* Ic configuration. */ } }; DigitalOut actuatedLED(LED2); const static char DEVICE_NAME[] = "mydevice"; // CHANGE NAME static const uint16_t uuid16_list[] = {LEDService::LED_SERVICE_UUID}; // GATT ATTRIBUTE UUID LEDService *ledServicePtr; void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params) { (void)params; BLE::Instance().gap().startAdvertising(); // restart advertising } /** * This callback allows the LEDService to receive updates to the ledState Characteristic. * * @param[in] params * Information about the characterisitc being updated. */ void onDataWrittenCallback(const GattWriteCallbackParams *params) { if ((params->handle == ledServicePtr->getValueHandle()) && (params->len == 1)) { /* switch( *(params->data)){ case 0: actuatedLED=0 ; wait(1) ; actuatedLED=1 ; wait(1) ; actuatedLED=0 ; break ; case 1: actuatedLED=1 ; wait(1) ; actuatedLED=0 ; wait(1) ; actuatedLED=1 ; break ; } */ if ( *(params->data)== 0x00 ) { actuatedLED=1 ; call(); } else if (*(params->data)== 0x01) { actuatedLED=0 ; wait(0.5) ; actuatedLED=1 ; wait(0.5) ; actuatedLED=0 ; wait(0.5) ; actuatedLED=1 ; wait(0.5) ; actuatedLED=0 ; } else if (*(params->data)== 0x02) { actuatedLED=1 ; wait(0.5) ; actuatedLED=0 ; wait(0.5) ; actuatedLED=1 ; } else if (*(params->data)== 0x03) { actuatedLED=1 ; wait(0.5) ; actuatedLED=0 ; wait(0.5) ; actuatedLED=1 ; wait(0.5) ; actuatedLED=0 ; wait(0.5) ; actuatedLED=1 ; } } } /** * This function is called when the ble initialization process has failled */ int onBleInitError(BLE &ble, ble_error_t error) { /* Initialization error handling should go here */ } /** * Callback triggered when the ble initialization process has finished */ void bleInitComplete(BLE::InitializationCompleteCallbackContext *params) { BLE& ble = params->ble; ble_error_t error = params->error; if (error != BLE_ERROR_NONE) { /* In case of error, forward the error handling to onBleInitError */ onBleInitError(ble, error); return; } /* Ensure that it is the default instance of BLE */ if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) { return; } ble.gap().onDisconnection(disconnectionCallback); ble.gattServer().onDataWritten(onDataWrittenCallback); bool initialValueForLEDCharacteristic = true; ledServicePtr = new LEDService(ble, initialValueForLEDCharacteristic); /* setup advertising */ ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE); ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list)); ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME)); ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); ble.gap().setAdvertisingInterval(1000); /* 1000ms. */ ble.gap().startAdvertising(); while (true) { ble.waitForEvent(); } } int main(void) { BLE &ble = BLE::Instance(); ble.init(bleInitComplete); } void call() { /*----- Initialization. -----*/ /* Initializing SPI bus. */ #ifdef TARGET_STM32F401 DevSPI dev_spi(PB_15, PB_14, PB_13); #else DevSPI dev_spi(PB_15, PB_14, PB_13); #endif /* Initializing Motor Control Expansion Board. */ x_nucleo_ihm02a1 = new XNucleoIHM02A1(&init[0], &init[1], A4, A5, D4, A2, &dev_spi); /* Building a list of motor control components. */ L6470 **motors = x_nucleo_ihm02a1->get_components(); motors[0]->set_home(); /* Waiting. */ wait_ms(DELAY_1); /* Getting the current position. */ int position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Moving forward %d steps.\r\n", STEPS_1); /* Moving. */ motors[0]->move(StepperMotor::FWD, STEPS_1); /* Waiting while active. */ motors[0]->wait_while_active(); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Printing to the console. */ printf("--> Marking the current position.\r\n"); /* Marking the current position. */ motors[0]->set_mark(); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Moving backward %d steps.\r\n", STEPS_2); /* Moving. */ motors[0]->move(StepperMotor::BWD, STEPS_2); /* Waiting while active. */ motors[0]->wait_while_active(); /* Waiting. */ wait_ms(DELAY_1); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Going to marked position.\r\n"); /* Going to marked position. */ motors[0]->go_mark(); /* Waiting while active. */ motors[0]->wait_while_active(); /* Waiting. */ wait_ms(DELAY_1); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Going to home position.\r\n"); /* Going to home position. */ motors[0]->go_home(); /* Waiting while active. */ motors[0]->wait_while_active(); /* Waiting. */ wait_ms(DELAY_1); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Halving the microsteps.\r\n"); /* Halving the microsteps. */ init[0].step_sel = (init[0].step_sel > 0 ? init[0].step_sel - 1 : init[0].step_sel); if (!motors[0]->set_step_mode((StepperMotor::step_mode_t) init[0].step_sel)) { printf(" Step Mode not allowed.\r\n"); } /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Setting home position.\r\n"); /* Setting the home position. */ motors[0]->set_home(); /* Waiting. */ wait_ms(DELAY_1); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Waiting. */ wait_ms(DELAY_1); /* Printing to the console. */ printf("--> Moving forward %d steps.\r\n", STEPS_1); /* Moving. */ motors[0]->move(StepperMotor::FWD, STEPS_1); /* Waiting while active. */ motors[0]->wait_while_active(); /* Getting the current position. */ position = motors[0]->get_position(); /* Printing to the console. */ printf("--> Getting the current position: %d\r\n", position); /* Printing to the console. */ printf("--> Marking the current position.\r\n"); /* Marking the current position. */ motors[0]->set_mark(); /* Waiting. */ wait_ms(DELAY_2); /*----- Running together for a certain amount of time. -----*/ /* Printing to the console. */ printf("--> Running together for %d seconds.\r\n", DELAY_3 / 1000); /* Preparing each motor to perform a run at a specified speed. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_run(StepperMotor::BWD, 400); } /* Performing the action on each motor at the same time. */ x_nucleo_ihm02a1->perform_prepared_actions(); /* Waiting. */ wait_ms(DELAY_3); /*----- Increasing the speed while running. -----*/ /* Preparing each motor to perform a run at a specified speed. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_get_speed(); } /* Performing the action on each motor at the same time. */ uint32_t* results = x_nucleo_ihm02a1->perform_prepared_actions(); /* Printing to the console. */ printf(" Speed: M1 %d, M2 %d.\r\n", results[0], results[1]); /* Printing to the console. */ printf("--> Doublig the speed while running again for %d seconds.\r\n", DELAY_3 / 1000); /* Preparing each motor to perform a run at a specified speed. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_run(StepperMotor::BWD, results[m] << 1); } /* Performing the action on each motor at the same time. */ results = x_nucleo_ihm02a1->perform_prepared_actions(); /* Waiting. */ wait_ms(DELAY_3); /* Preparing each motor to perform a run at a specified speed. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_get_speed(); } /* Performing the action on each motor at the same time. */ results = x_nucleo_ihm02a1->perform_prepared_actions(); /* Printing to the console. */ printf(" Speed: M1 %d, M2 %d.\r\n", results[0], results[1]); /* Waiting. */ wait_ms(DELAY_1); /*----- Hard Stop. -----*/ /* Printing to the console. */ printf("--> Hard Stop.\r\n"); /* Preparing each motor to perform a hard stop. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_hard_stop(); } /* Performing the action on each motor at the same time. */ x_nucleo_ihm02a1->perform_prepared_actions(); /* Waiting. */ wait_ms(DELAY_2); /*----- Doing a full revolution on each motor, one after the other. -----*/ /* Printing to the console. */ printf("--> Doing a full revolution on each motor, one after the other.\r\n"); /* Doing a full revolution on each motor, one after the other. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { for (int i = 0; i < MPR_1; i++) { /* Computing the number of steps. */ int steps = (int) (((int) init[m].fullstepsperrevolution * pow(2.0f, init[m].step_sel)) / MPR_1); /* Moving. */ motors[m]->move(StepperMotor::FWD, steps); /* Waiting while active. */ motors[m]->wait_while_active(); /* Waiting. */ wait_ms(DELAY_1); } } /* Waiting. */ wait_ms(DELAY_2); /*----- High Impedance State. -----*/ /* Printing to the console. */ printf("--> High Impedance State.\r\n"); /* Preparing each motor to set High Impedance State. */ for (int m = 0; m < L6470DAISYCHAINSIZE; m++) { motors[m]->prepare_hard_hiz(); } /* Performing the action on each motor at the same time. */ x_nucleo_ihm02a1->perform_prepared_actions(); /* Waiting. */ wait_ms(DELAY_2); nCS_ = 0 ; }