Smartphone app control stepper motors via bluetooth low energy(BLE) on stm32F401RE x IHM02A1 x IDB05A1 V2 .

Dependencies:   BLE_API X_NUCLEO_IDB0XA1 X_NUCLEO_IHM02A1 mbed

Fork of BLE_LED_IDB0XA1_demo by NEHSROBOT

main.cpp

Committer:
barry210110
Date:
2018-02-01
Revision:
7:126b141a8c86
Parent:
3:e0efdb741bd4
Child:
8:ef9b37e2464f
Child:
9:66938f196868

File content as of revision 7:126b141a8c86:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
 /* Includes ------------------------------------------------------------------*/



/* Helper header files. */
#include "DevSPI.h"
void call();
/* Expansion Board specific header files. */
#include "XNucleoIHM02A1.h"

#include "mbed.h"
#include "ble/BLE.h"
#include "LEDService.h"
#include "BlueNRGDevice.h"
int       temp,add         ;
/* Definitions ---------------------------------------------------------------*/

/* Number of movements per revolution. */
#define MPR_1 4

/* Number of steps. */
#define STEPS_1 (400 * 128)   /* 1 revolution given a 400 steps motor configured at 1/128 microstep mode. */
#define STEPS_2 (STEPS_1 * 2)

/* Delay in milliseconds. */
#define DELAY_1 1000
#define DELAY_2 2000
#define DELAY_3 5000


/* Variables -----------------------------------------------------------------*/

/* Motor Control Expansion Board. */
XNucleoIHM02A1 *x_nucleo_ihm02a1;

/* Initialization parameters of the motors connected to the expansion board. */
L6470_init_t init[L6470DAISYCHAINSIZE] = {
    /* First Motor. */
    {
        9.0,                           /* Motor supply voltage in V. */
        400,                           /* Min number of steps per revolution for the motor. */
        1.7,                           /* Max motor phase voltage in A. */
        3.06,                          /* Max motor phase voltage in V. */
        300.0,                         /* Motor initial speed [step/s]. */
        500.0,                         /* Motor acceleration [step/s^2] (comment for infinite acceleration mode). */
        500.0,                         /* Motor deceleration [step/s^2] (comment for infinite deceleration mode). */
        992.0,                         /* Motor maximum speed [step/s]. */
        0.0,                           /* Motor minimum speed [step/s]. */
        602.7,                         /* Motor full-step speed threshold [step/s]. */
        3.06,                          /* Holding kval [V]. */
        3.06,                          /* Constant speed kval [V]. */
        3.06,                          /* Acceleration starting kval [V]. */
        3.06,                          /* Deceleration starting kval [V]. */
        61.52,                         /* Intersect speed for bemf compensation curve slope changing [step/s]. */
        392.1569e-6,                   /* Start slope [s/step]. */
        643.1372e-6,                   /* Acceleration final slope [s/step]. */
        643.1372e-6,                   /* Deceleration final slope [s/step]. */
        0,                             /* Thermal compensation factor (range [0, 15]). */
        3.06 * 1000 * 1.10,            /* Ocd threshold [ma] (range [375 ma, 6000 ma]). */
        3.06 * 1000 * 1.00,            /* Stall threshold [ma] (range [31.25 ma, 4000 ma]). */
        StepperMotor::STEP_MODE_1_128, /* Step mode selection. */
        0xFF,                          /* Alarm conditions enable. */
        0x2E88                         /* Ic configuration. */
    },

    /* Second Motor. */
    {
        9.0,                           /* Motor supply voltage in V. */
        400,                           /* Min number of steps per revolution for the motor. */
        1.7,                           /* Max motor phase voltage in A. */
        3.06,                          /* Max motor phase voltage in V. */
        300.0,                         /* Motor initial speed [step/s]. */
        500.0,                         /* Motor acceleration [step/s^2] (comment for infinite acceleration mode). */
        500.0,                         /* Motor deceleration [step/s^2] (comment for infinite deceleration mode). */
        992.0,                         /* Motor maximum speed [step/s]. */
        0.0,                           /* Motor minimum speed [step/s]. */
        602.7,                         /* Motor full-step speed threshold [step/s]. */
        3.06,                          /* Holding kval [V]. */
        3.06,                          /* Constant speed kval [V]. */
        3.06,                          /* Acceleration starting kval [V]. */
        3.06,                          /* Deceleration starting kval [V]. */
        61.52,                         /* Intersect speed for bemf compensation curve slope changing [step/s]. */
        392.1569e-6,                   /* Start slope [s/step]. */
        643.1372e-6,                   /* Acceleration final slope [s/step]. */
        643.1372e-6,                   /* Deceleration final slope [s/step]. */
        0,                             /* Thermal compensation factor (range [0, 15]). */
        3.06 * 1000 * 1.10,            /* Ocd threshold [ma] (range [375 ma, 6000 ma]). */
        3.06 * 1000 * 1.00,            /* Stall threshold [ma] (range [31.25 ma, 4000 ma]). */
        StepperMotor::STEP_MODE_1_128, /* Step mode selection. */
        0xFF,                          /* Alarm conditions enable. */
        0x2E88                         /* Ic configuration. */
    }
};

DigitalOut actuatedLED(LED2);
const static char     DEVICE_NAME[] = "mydevice";    //   CHANGE NAME
static const uint16_t uuid16_list[] = {LEDService::LED_SERVICE_UUID};   // GATT ATTRIBUTE UUID

LEDService *ledServicePtr;

void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params)
{
    (void)params;
    BLE::Instance().gap().startAdvertising(); // restart advertising
}

/**
 * This callback allows the LEDService to receive updates to the ledState Characteristic.
 *
 * @param[in] params
 *     Information about the characterisitc being updated.
 */
void onDataWrittenCallback(const GattWriteCallbackParams *params) {
    if ((params->handle == ledServicePtr->getValueHandle()) && (params->len == 1)) {
        
 /*       switch( *(params->data)){
            case 0:
             actuatedLED=0      ;
            wait(1)            ;
            actuatedLED=1      ;
            wait(1)            ;
            actuatedLED=0      ;
            break              ;
            case 1:
            actuatedLED=1      ;
            wait(1)            ;
            actuatedLED=0      ;
            wait(1)            ;
            actuatedLED=1      ;
            break              ;
            }    */
        if (  *(params->data)== 0x00 ) 
        {    
            actuatedLED=1     ;
            call();
              
        }
        else if (*(params->data)== 0x01)  
        { 
            actuatedLED=0      ;
            wait(0.5)            ;
            actuatedLED=1      ;
            wait(0.5)            ;
            actuatedLED=0      ;
            wait(0.5)            ;
            actuatedLED=1      ;
            wait(0.5)            ;
            actuatedLED=0      ;
            
        }
        else if (*(params->data)== 0x02)  {
            actuatedLED=1      ;
            wait(0.5)            ;
            actuatedLED=0      ;
            wait(0.5)            ;
            actuatedLED=1      ;
        }
          else if (*(params->data)== 0x03)  {
           actuatedLED=1      ;
            wait(0.5)            ;
            actuatedLED=0      ;
            wait(0.5)            ;
            actuatedLED=1      ;
            wait(0.5)            ;
            actuatedLED=0      ;
            wait(0.5)            ;
            actuatedLED=1      ;
        }
   
    }
 
}

/** 
 * This function is called when the ble initialization process has failled 
 */ 
int onBleInitError(BLE &ble, ble_error_t error) 
{ 
    /* Initialization error handling should go here */ 
} 

/** 
 * Callback triggered when the ble initialization process has finished 
 */ 
void bleInitComplete(BLE::InitializationCompleteCallbackContext *params) 
{
    BLE&        ble   = params->ble;
    ble_error_t error = params->error;

    if (error != BLE_ERROR_NONE) {
        /* In case of error, forward the error handling to onBleInitError */
        onBleInitError(ble, error);
        return;
    }

    /* Ensure that it is the default instance of BLE */
    if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {
        return;
    }

    ble.gap().onDisconnection(disconnectionCallback);
    ble.gattServer().onDataWritten(onDataWrittenCallback);

    bool initialValueForLEDCharacteristic = true;
    ledServicePtr = new LEDService(ble, initialValueForLEDCharacteristic);

    /* setup advertising */
    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list));
    ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME));
    ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
    ble.gap().setAdvertisingInterval(1000); /* 1000ms. */
    ble.gap().startAdvertising();
 
    while (true) {
        ble.waitForEvent();
    }
}

int main(void)
{       

    BLE &ble = BLE::Instance();
    
    ble.init(bleInitComplete); 
 
}
  
void call()
{
/*----- Initialization. -----*/
/* Initializing SPI bus. */
 
  
#ifdef TARGET_STM32F401
    DevSPI dev_spi(PB_15, PB_14, PB_13);
#else
    DevSPI dev_spi(PB_15, PB_14, PB_13);
#endif

    /* Initializing Motor Control Expansion Board. */
    x_nucleo_ihm02a1 = new XNucleoIHM02A1(&init[0], &init[1], A4, A5, D4, A2, &dev_spi);

    /* Building a list of motor control components. */
    L6470 **motors = x_nucleo_ihm02a1->get_components();
   motors[0]->set_home(); 
    /* Waiting. */
    wait_ms(DELAY_1);

    /* Getting the current position. */
    int position = motors[0]->get_position();

    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Moving forward %d steps.\r\n", STEPS_1);

    /* Moving. */
    motors[0]->move(StepperMotor::FWD, STEPS_1);

    /* Waiting while active. */
    motors[0]->wait_while_active();

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Printing to the console. */
    printf("--> Marking the current position.\r\n");

    /* Marking the current position. */
    motors[0]->set_mark();

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Moving backward %d steps.\r\n", STEPS_2);

    /* Moving. */
    motors[0]->move(StepperMotor::BWD, STEPS_2);

    /* Waiting while active. */
    motors[0]->wait_while_active();

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Going to marked position.\r\n");

    /* Going to marked position. */
    motors[0]->go_mark();
    
    /* Waiting while active. */
    motors[0]->wait_while_active();

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Going to home position.\r\n");

    /* Going to home position. */
    motors[0]->go_home();
    
    /* Waiting while active. */
    motors[0]->wait_while_active();

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Halving the microsteps.\r\n");

    /* Halving the microsteps. */
    init[0].step_sel = (init[0].step_sel > 0 ? init[0].step_sel -  1 : init[0].step_sel);
    if (!motors[0]->set_step_mode((StepperMotor::step_mode_t) init[0].step_sel)) {
        printf("    Step Mode not allowed.\r\n");
    }

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Setting home position.\r\n");

    /* Setting the home position. */
    motors[0]->set_home();

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Waiting. */
    wait_ms(DELAY_1);

    /* Printing to the console. */
    printf("--> Moving forward %d steps.\r\n", STEPS_1);

    /* Moving. */
    motors[0]->move(StepperMotor::FWD, STEPS_1);

    /* Waiting while active. */
    motors[0]->wait_while_active();

    /* Getting the current position. */
    position = motors[0]->get_position();
    
    /* Printing to the console. */
    printf("--> Getting the current position: %d\r\n", position);

    /* Printing to the console. */
    printf("--> Marking the current position.\r\n");

    /* Marking the current position. */
    motors[0]->set_mark();

    /* Waiting. */
    wait_ms(DELAY_2);


    /*----- Running together for a certain amount of time. -----*/

    /* Printing to the console. */
    printf("--> Running together for %d seconds.\r\n", DELAY_3 / 1000);

    /* Preparing each motor to perform a run at a specified speed. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_run(StepperMotor::BWD, 400);
    }

    /* Performing the action on each motor at the same time. */
    x_nucleo_ihm02a1->perform_prepared_actions();

    /* Waiting. */
    wait_ms(DELAY_3);


    /*----- Increasing the speed while running. -----*/

    /* Preparing each motor to perform a run at a specified speed. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_get_speed();
    }

    /* Performing the action on each motor at the same time. */
    uint32_t* results = x_nucleo_ihm02a1->perform_prepared_actions();

    /* Printing to the console. */
    printf("    Speed: M1 %d, M2 %d.\r\n", results[0], results[1]);

    /* Printing to the console. */
    printf("--> Doublig the speed while running again for %d seconds.\r\n", DELAY_3 / 1000);

    /* Preparing each motor to perform a run at a specified speed. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_run(StepperMotor::BWD, results[m] << 1);
    }

    /* Performing the action on each motor at the same time. */
    results = x_nucleo_ihm02a1->perform_prepared_actions();

    /* Waiting. */
    wait_ms(DELAY_3);

    /* Preparing each motor to perform a run at a specified speed. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_get_speed();
    }

    /* Performing the action on each motor at the same time. */
    results = x_nucleo_ihm02a1->perform_prepared_actions();

    /* Printing to the console. */
    printf("    Speed: M1 %d, M2 %d.\r\n", results[0], results[1]);

    /* Waiting. */
    wait_ms(DELAY_1);


    /*----- Hard Stop. -----*/

    /* Printing to the console. */
    printf("--> Hard Stop.\r\n");

    /* Preparing each motor to perform a hard stop. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_hard_stop();
    }

    /* Performing the action on each motor at the same time. */
    x_nucleo_ihm02a1->perform_prepared_actions();

    /* Waiting. */
    wait_ms(DELAY_2);


    /*----- Doing a full revolution on each motor, one after the other. -----*/

    /* Printing to the console. */
    printf("--> Doing a full revolution on each motor, one after the other.\r\n");

    /* Doing a full revolution on each motor, one after the other. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        for (int i = 0; i < MPR_1; i++) {
            /* Computing the number of steps. */
            int steps = (int) (((int) init[m].fullstepsperrevolution * pow(2.0f, init[m].step_sel)) / MPR_1);

            /* Moving. */
            motors[m]->move(StepperMotor::FWD, steps);
            
            /* Waiting while active. */
            motors[m]->wait_while_active();

            /* Waiting. */
            wait_ms(DELAY_1);
        }
    }

    /* Waiting. */
    wait_ms(DELAY_2);


    /*----- High Impedance State. -----*/

    /* Printing to the console. */
    printf("--> High Impedance State.\r\n");

    /* Preparing each motor to set High Impedance State. */
    for (int m = 0; m < L6470DAISYCHAINSIZE; m++) {
        motors[m]->prepare_hard_hiz();
    }

    /* Performing the action on each motor at the same time. */
    x_nucleo_ihm02a1->perform_prepared_actions();

    /* Waiting. */
    wait_ms(DELAY_2);  

   nCS_ = 0        ;
    }