Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
The channel plans in this library can be used as starting points for new channel plans and used as a reference for implementation.
Information
To use source version of a channel plan, first remove the Channel Plans folder from libmDot-Custom library.
Not all plans are complete to LoRaWAN specifications.
AS923 and KR920 have the default channels defined and can accept in channels in the Join Accept message or from New Channel MAC commands.
Channel Set must match those expected by the network server in order for ADR to work
AS923 regional settings can be adjusted by the network server using Tx Param Setup MAC command to set max EIRP and dwell time for uplinks.
src/CustomChannelPlan_US915.cpp
- Committer:
- Jason Reiss
- Date:
- 2017-02-07
- Revision:
- 14:5bbcd92d635a
- Parent:
- 13:996f1663d12e
File content as of revision 14:5bbcd92d635a:
/********************************************************************** * COPYRIGHT 2016 MULTI-TECH SYSTEMS, INC. * * ALL RIGHTS RESERVED BY AND FOR THE EXCLUSIVE BENEFIT OF * MULTI-TECH SYSTEMS, INC. * * MULTI-TECH SYSTEMS, INC. - CONFIDENTIAL AND PROPRIETARY * INFORMATION AND/OR TRADE SECRET. * * NOTICE: ALL CODE, PROGRAM, INFORMATION, SCRIPT, INSTRUCTION, * DATA, AND COMMENT HEREIN IS AND SHALL REMAIN THE CONFIDENTIAL * INFORMATION AND PROPERTY OF MULTI-TECH SYSTEMS, INC. * USE AND DISCLOSURE THEREOF, EXCEPT AS STRICTLY AUTHORIZED IN A * WRITTEN AGREEMENT SIGNED BY MULTI-TECH SYSTEMS, INC. IS PROHIBITED. * ***********************************************************************/ #include "CustomChannelPlan_US915.h" #include "limits.h" using namespace lora; const uint8_t CustomChannelPlan_US915::US915_TX_POWERS[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 }; const uint8_t CustomChannelPlan_US915::US915_RADIO_POWERS[] = { 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 19 }; const uint8_t CustomChannelPlan_US915::US915_MAX_PAYLOAD_SIZE[] = { 11, 53, 126, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 }; const uint8_t CustomChannelPlan_US915::US915_MAX_PAYLOAD_SIZE_REPEATER[] = { 11, 53, 126, 222, 222, 0, 0, 33, 109, 222, 222, 222, 0, 0 }; CustomChannelPlan_US915::CustomChannelPlan_US915(SxRadio& radio, Settings& settings) : ChannelPlan(radio, settings) { } CustomChannelPlan_US915::~CustomChannelPlan_US915() { } void CustomChannelPlan_US915::Init() { _type = FIXED; _planName = "US915"; _datarates.clear(); _channels.clear(); _dutyBands.clear(); DutyBand band; band.Index = 0; band.DutyCycle = 0; Datarate dr; logWarning("Custom ChannelPlan"); _maxTxPower = 30; _minTxPower = 10; _minFrequency = US915_FREQ_MIN; _maxFrequency = US915_FREQ_MAX; TX_POWERS = US915_TX_POWERS; RADIO_POWERS = US915_RADIO_POWERS; MAX_PAYLOAD_SIZE = US915_MAX_PAYLOAD_SIZE; MAX_PAYLOAD_SIZE_REPEATER = US915_MAX_PAYLOAD_SIZE_REPEATER; band.FrequencyMin = US915_FREQ_MIN; band.FrequencyMax = US915_FREQ_MAX; _freqUBase125k = US915_125K_FREQ_BASE; _freqUStep125k = US915_125K_FREQ_STEP; _freqUBase500k = US915_500K_FREQ_BASE; _freqUStep500k = US915_500K_FREQ_STEP; _freqDBase500k = US915_500K_DBASE; _freqDStep500k = US915_500K_DSTEP; _settings.Session.Rx2Frequency = US915_500K_DBASE; _minDatarate = US915_MIN_DATARATE; _maxDatarate = US915_MAX_DATARATE; _minRx2Datarate = DR_8; _maxRx2Datarate = DR_13; _minDatarateOffset = US915_MIN_DATARATE_OFFSET; _maxDatarateOffset = US915_MAX_DATARATE_OFFSET; _numChans125k = US915_125K_NUM_CHANS; _numChans500k = US915_500K_NUM_CHANS; logInfo("Initialize channels..."); SetNumberOfChannels(US915_125K_NUM_CHANS + US915_500K_NUM_CHANS, false); dr.SpreadingFactor = SF_10; logInfo("Initialize datarates..."); // Add DR0-3 while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Add DR4 dr.SpreadingFactor = SF_8; dr.Bandwidth = BW_500; AddDatarate(-1, dr); dr.Index++; // Skip DR5-7 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), dr.Index++; AddDatarate(-1, dr), dr.Index++; AddDatarate(-1, dr), dr.Index++; if (_settings.Network.ChannelGroup == 0) { band.PowerMax = 30; } else { band.PowerMax = 21; } band.TimeOffEnd = 0; AddDutyBand(-1, band); _settings.Session.Rx2DatarateIndex = DR_8; // Add DR8-13 dr.SpreadingFactor = SF_12; while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Skip DR14-15 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), AddDatarate(-1, dr); _settings.Session.TxDatarate = DR_0; SetChannelGroup(_settings.Network.ChannelGroup); } uint8_t CustomChannelPlan_US915::HandleJoinAccept(const uint8_t* buffer, uint8_t size) { if (_settings.Device.FrequencyBand == lora::US915 || _settings.Device.FrequencyBand == lora::AU915) { if (size > 17) { // TODO: Handle future channel mask settings } } return LORA_OK; } void CustomChannelPlan_US915::SetNumberOfChannels(uint8_t channels, bool resize) { uint8_t newsize = ((channels - 1) / CHAN_MASK_SIZE) + 1; if (resize) { _channels.resize(channels); } _channelMask.resize(newsize, 0x0); _numChans = channels; } bool CustomChannelPlan_US915::IsChannelEnabled(uint8_t channel) { uint8_t index = channel / CHAN_MASK_SIZE; uint8_t shift = channel % CHAN_MASK_SIZE; assert(index < _channelMask.size() * CHAN_MASK_SIZE); // cannot shift over 32 bits assert(shift < 32); // logDebug("index: %d shift %d cm: %04x bit: %04x enabled: %d", index, shift, _channelMask[index], (1 << shift), (_channelMask[index] & (1 << shift)) == (1 << shift)); return (_channelMask[index] & (1 << shift)) == (1 << shift); } uint8_t CustomChannelPlan_US915::GetMinDatarate() { if (_settings.Network.Mode == lora::PEER_TO_PEER) return 8; else return _minDatarate; } uint8_t CustomChannelPlan_US915::GetMaxDatarate() { if (_settings.Network.Mode == lora::PEER_TO_PEER) return 13; else return _maxDatarate; } uint8_t CustomChannelPlan_US915::SetRx1Offset(uint8_t offset) { _settings.Session.Rx1DatarateOffset = offset; return LORA_OK; } uint8_t CustomChannelPlan_US915::SetRx2Frequency(uint32_t freq) { _settings.Session.Rx2Frequency = freq; return LORA_OK; } uint8_t CustomChannelPlan_US915::SetRx2DatarateIndex(uint8_t index) { _settings.Session.Rx2DatarateIndex = index; return LORA_OK; } uint8_t CustomChannelPlan_US915::SetTxConfig() { logInfo("Configure radio for TX"); uint8_t band = GetDutyBand(GetChannel(_txChannel).Frequency); Datarate txDr = GetDatarate(_settings.Session.TxDatarate); int8_t max_pwr = _dutyBands[band].PowerMax; int8_t pwr = 0; pwr = std::min < int8_t > (_settings.Session.TxPower, max_pwr); if (pwr + _settings.Network.AntennaGain >= max_pwr + 6 && _settings.Network.AntennaGain > 6) { pwr -= (_settings.Network.AntennaGain - 6); } for (int i = 20; i >= 0; i--) { if (RADIO_POWERS[i] <= pwr) { pwr = i; break; } if (i == 0) { pwr = i; } } logDebug("Session pwr: %d ant: %d max: %d", _settings.Session.TxPower, _settings.Network.AntennaGain, max_pwr); logDebug("Radio Power index: %d output: %d total: %d", pwr, RADIO_POWERS[pwr], RADIO_POWERS[pwr] + _settings.Network.AntennaGain); uint32_t bw = txDr.Bandwidth; uint32_t sf = txDr.SpreadingFactor; uint8_t cr = txDr.Coderate; uint8_t pl = txDr.PreambleLength; uint16_t fdev = 0; bool crc = txDr.Crc; bool iq = txDr.TxIQ; if (_settings.Network.DisableCRC == true) crc = false; SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; fdev = 25e3; bw = 0; } _radio.SetTxConfig(modem, pwr, fdev, bw, sf, cr, pl, false, crc, false, 0, iq, 3e3); logDebug("TX PWR: %u DR: %u SF: %u BW: %u CR: %u PL: %u CRC: %d IQ: %d", pwr, txDr.Index, sf, bw, cr, pl, crc, iq); return LORA_OK; } uint8_t CustomChannelPlan_US915::SetRxConfig(uint8_t window, bool continuous) { RxWindow rxw = GetRxWindow(window); _radio.SetChannel(rxw.Frequency); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint32_t bw = rxDr.Bandwidth; uint32_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); uint32_t afc = 0; bool crc = rxDr.Crc; if (_settings.Network.DisableCRC == true) crc = false; Datarate txDr = GetDatarate(_settings.Session.TxDatarate); bool iq = txDr.RxIQ; if (P2PEnabled()) { iq = txDr.TxIQ; } SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; cr = 0; bw = 50e3; afc = 83333; iq = false; } // Disable printf's to actually receive packets, printing to debug may mess up the timing // logTrace("Configure radio for RX%d on freq: %lu", window, rxw.Frequency); // logTrace("RX SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", sf, bw, cr, pl, sto, crc, iq); _radio.SetRxConfig(modem, bw, sf, cr, afc, pl, sto, false, 0, crc, false, 0, iq, continuous); return LORA_OK; } uint8_t CustomChannelPlan_US915::AddChannel(int8_t index, Channel channel) { logTrace("Add Channel %d : %lu : %02x %d", index, channel.Frequency, channel.DrRange.Value, _channels.size()); assert(index < (int) _channels.size()); if (index >= 0) { _channels[index] = channel; } else { _channels.push_back(channel); } return LORA_OK; } Channel CustomChannelPlan_US915::GetChannel(int8_t index) { Channel chan; memset(&chan, 0, sizeof(Channel)); if (_channels.size() > 0) { chan = _channels[index]; } else { if (index < 64) { chan.Index = index; chan.DrRange.Fields.Min = _minDatarate; chan.DrRange.Fields.Max = _maxDatarate - 1; chan.Frequency = _freqUBase125k + (_freqUStep125k * index); } else if (index < 72) { chan.Index = index; chan.DrRange.Fields.Min = _maxDatarate; chan.DrRange.Fields.Max = _maxDatarate; chan.Frequency = _freqUBase500k + (_freqUStep500k * (index - 64)); } } return chan; } uint8_t CustomChannelPlan_US915::SetChannelGroup(uint8_t group) { _txChannelGroup = group; if (group > 0) { SetChannelMask(0, 0x0000); SetChannelMask(1, 0x0000); SetChannelMask(2, 0x0000); SetChannelMask(3, 0x0000); SetChannelMask(4, 0x0000); SetChannelMask((group - 1) / 2, (group % 2) ? 0x00FF : 0xFF00); SetChannelMask(4, 1 << (group - 1)); } else { SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, 0x00FF); } return LORA_OK; } void CustomChannelPlan_US915::LogRxWindow(uint8_t wnd) { RxWindow rxw = GetRxWindow(wnd); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint8_t bw = rxDr.Bandwidth; uint8_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); bool crc = rxDr.Crc; bool iq = GetTxDatarate().RxIQ; logTrace("RX%d on freq: %lu", wnd, rxw.Frequency); logTrace("RX DR: %u SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", rxDr.Index, sf, bw, cr, pl, sto, crc, iq); } RxWindow CustomChannelPlan_US915::GetRxWindow(uint8_t window) { RxWindow rxw; int index = 0; if (P2PEnabled()) { rxw.Frequency = _settings.Network.TxFrequency; index = _settings.Session.TxDatarate; } else { if (window == 1) { if (_txChannel < _numChans125k) { if (_settings.Network.Mode == PUBLIC) { rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } else { rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; } } else rxw.Frequency = _freqDBase500k + (_txChannel - _numChans125k) * _freqDStep500k; if (_settings.Session.TxDatarate <= DR_6) { index = _settings.Session.TxDatarate + 10 - _settings.Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; if (index > DR_13) index = DR_13; } else if (_settings.Session.TxDatarate >= DR_8) { index = _settings.Session.TxDatarate - _settings.Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; } } else { if (_settings.Network.Mode == PUBLIC) { rxw.Frequency = _settings.Session.Rx2Frequency; } else { if (_txChannel < 64) rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; else rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } index = _settings.Session.Rx2DatarateIndex; } } rxw.DatarateIndex = index; return rxw; } uint8_t CustomChannelPlan_US915::HandleRxParamSetup(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x07; int8_t datarate = 0; int8_t drOffset = 0; uint32_t freq = 0; drOffset = payload[index++]; datarate = drOffset & 0x0F; drOffset = (drOffset >> 4) & 0x07; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if (drOffset < 0 || drOffset > _maxDatarateOffset) { logInfo("DR Offset KO"); status &= 0xFB; // Rx1DrOffset range KO } if ((status & 0x07) == 0x07) { logInfo("RxParamSetup accepted Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); SetRx2DatarateIndex(datarate); SetRx2Frequency(freq); SetRx1Offset(drOffset); } else { logInfo("RxParamSetup rejected Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); } return LORA_OK; } uint8_t CustomChannelPlan_US915::HandleNewChannel(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { // Not Supported in US915 status = 0; return LORA_OK; } uint8_t CustomChannelPlan_US915::HandlePingSlotChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { lora::CopyFreqtoInt(payload + index, _beaconRxChannel.Frequency); index += 3; if (_beaconRxChannel.Frequency != 0) { _beaconRxChannel.DrRange.Value = payload[index]; } else { // TODO: set to default beacon rx channel } status = 0x03; return LORA_OK; } uint8_t CustomChannelPlan_US915::HandleBeaconFrequencyReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x03; Channel chParam; // Skip channel index index++; lora::CopyFreqtoInt(payload + index, chParam.Frequency); index += 3; chParam.DrRange.Value = payload[index++]; if (!_radio.CheckRfFrequency(chParam.Frequency)) { status &= 0xFE; // Channel frequency KO } if (chParam.DrRange.Fields.Min < chParam.DrRange.Fields.Max) { status &= 0xFD; // Datarate range KO } else if (chParam.DrRange.Fields.Min < _minDatarate || chParam.DrRange.Fields.Min > _maxDatarate) { status &= 0xFD; // Datarate range KO } else if (chParam.DrRange.Fields.Max < _minDatarate || chParam.DrRange.Fields.Max > _maxDatarate) { status &= 0xFD; // Datarate range KO } if ((status & 0x03) == 0x03) { _beaconChannel = chParam; } if (_beaconChannel.Frequency == 0) { // TODO: Set to default } status = 0x01; return LORA_OK; } bool CustomChannelPlan_US915::AdrAckReq() { if (_settings.Network.ADREnabled == false) return false; bool ret = false; if (_settings.Session.TxDatarate == MIN_DATARATE) { _settings.Session.AdrCounter = 0; } else { logDebug("ADR ACK CNT: %d LIMIT: %d DELAY: %d", _settings.Session.AdrCounter, ADR_ACK_LIMIT, ADR_ACK_DELAY); ret = (_settings.Session.AdrCounter >= ADR_ACK_LIMIT); if (_settings.Session.AdrCounter >= (ADR_ACK_LIMIT + ADR_ACK_DELAY)) { if ((_settings.Session.AdrCounter - 1) % ADR_ACK_DELAY == 0) { if (_settings.Session.TxDatarate > MIN_DATARATE) { _settings.Session.TxDatarate--; } if (_settings.Session.TxDatarate == MIN_DATARATE) { EnableDefaultChannels(); } } } } return ret; } uint8_t CustomChannelPlan_US915::HandleAdrCommand(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t power = 0; uint8_t datarate = 0; uint16_t mask = 0; uint8_t ctrl = 0; uint8_t nbRep = 0; status = 0x07; datarate = payload[index++]; power = datarate & 0x0F; datarate = (datarate >> 4) & 0x0F; mask = payload[index++]; mask |= payload[index++] << 8; nbRep = payload[index++]; ctrl = (nbRep >> 4) & 0x07; nbRep &= 0x0F; if (nbRep == 0) { nbRep = 1; } if (!(mask == 0 && ctrl == 0)) { if (ctrl == 5) { mask = 0; ctrl = 0; } } if (datarate > _maxDatarate) { logDebug("ADR Datarate KO"); status &= 0xFD; // Datarate KO } // // Remark MaxTxPower = 0 and MinTxPower = 5 // if (TX_POWERS[power] < _minTxPower || TX_POWERS[power] > _maxTxPower) { logDebug("ADR TxPower KO"); status &= 0xFB; // TxPower KO } if (ctrl == 7 && mask == 0) { // reject command to disable all channels logWarning("Rejecting ADR command to disable all channels"); status &= 0xFE; // ChannelMask KO } uint8_t chans_enabled = 0; if (ctrl <= 3) { // at least 6 - 125 kHz channel must be enabled chans_enabled += CountBits(_channelMask[0]); chans_enabled += CountBits(_channelMask[1]); chans_enabled += CountBits(_channelMask[2]); chans_enabled += CountBits(_channelMask[3]); chans_enabled -= CountBits(_channelMask[ctrl]); chans_enabled += CountBits(mask); if (chans_enabled == 0) { // reject command logWarning("Rejecting ADR command to disable all channels"); status &= 0xFE; // ChannelMask KO } } if (datarate < DR_4) { if (ctrl > 3) { chans_enabled += CountBits(_channelMask[0]); chans_enabled += CountBits(_channelMask[1]); chans_enabled += CountBits(_channelMask[2]); chans_enabled += CountBits(_channelMask[3]); } if (chans_enabled == 0 || ctrl == 7) { status &= 0xFD; // Datarate KO } } else if (datarate == DR_4) { if ((ctrl == 4 || ctrl == 6) && ((mask & 0xFF) == 0)) { status &= 0xFD; // Datarate KO } } else if ((_channelMask[4] & 0xFF) == 0) { status &= 0xFD; // Datarate KO } if ((status & 0x07) == 0x07) { logDebug("ADR settings accepted"); if (_settings.Network.ADREnabled) { _settings.Session.TxDatarate = datarate; _settings.Session.TxPower = TX_POWERS[power]; } else { logInfo("ADR is disabled, DR and Power not changed."); status &= 0xFB; // TxPower KO status &= 0xFD; // Datarate KO } if (ctrl == 6) { // enable all 125 kHz channels SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, mask); } else if (ctrl == 7) { // disable all 125 kHz channels SetChannelMask(0, 0x0); SetChannelMask(1, 0x0); SetChannelMask(2, 0x0); SetChannelMask(3, 0x0); SetChannelMask(4, mask); } else { SetChannelMask(ctrl, mask); } _settings.Session.Redundancy = nbRep; } logDebug("ADR DR: %u PWR: %u Ctrl: %02x Mask: %04x NbRep: %u Stat: %02x", datarate, power, ctrl, mask, nbRep, status); return LORA_OK; } uint32_t CustomChannelPlan_US915::GetTimeOffAir() { if (_settings.Test.DisableDutyCycle == lora::ON) return 0; uint32_t min = 0; uint32_t now = _dutyCycleTimer.read_ms(); if (_settings.Session.AggregatedTimeOffEnd > 0 && _settings.Session.AggregatedTimeOffEnd > now) { min = std::max < uint32_t > (min, _settings.Session.AggregatedTimeOffEnd - now); } now = time(NULL); uint32_t join_time = 0; if (_settings.Session.JoinFirstAttempt != 0 && now < _settings.Session.JoinTimeOffEnd) { join_time = (_settings.Session.JoinTimeOffEnd - now) * 1000; } min = std::max < uint32_t > (join_time, min); return min; } std::vector<uint32_t> lora::CustomChannelPlan_US915::GetChannels() { std::vector < uint32_t > chans; if (_settings.Network.ChannelGroup > 0) { uint8_t chans_per_group = 8; size_t start = (_settings.Network.ChannelGroup - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetChannel(_numChans125k + (_settings.Network.ChannelGroup - 1)).Frequency); chans.push_back(GetRxWindow(2).Frequency); } else { for (int8_t i = 0; i < _numChans; i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetRxWindow(2).Frequency); } return chans; } std::vector<uint8_t> lora::CustomChannelPlan_US915::GetChannelRanges() { std::vector < uint8_t > ranges; if (_settings.Network.ChannelGroup > 0) { uint8_t chans_per_group = 8; size_t start = (_settings.Network.ChannelGroup - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetChannel(_numChans125k + (_settings.Network.ChannelGroup - 1)).DrRange.Value); ranges.push_back(GetRxWindow(2).DatarateIndex); } else { for (int8_t i = 0; i < _numChans; i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetRxWindow(2).DatarateIndex); } ranges.push_back(GetRxWindow(2).DatarateIndex); return ranges; } void lora::CustomChannelPlan_US915::EnableDefaultChannels() { SetChannelGroup(GetChannelGroup()); } uint8_t CustomChannelPlan_US915::GetNextChannel() { if (_settings.Session.AggregatedTimeOffEnd != 0) { return LORA_AGGREGATED_DUTY_CYCLE; } if (P2PEnabled() || _settings.Network.TxFrequency != 0) { logDebug("Using frequency %d", _settings.Network.TxFrequency); if (_settings.Test.DisableDutyCycle != lora::ON) { int8_t band = GetDutyBand(_settings.Network.TxFrequency); logDebug("band: %d freq: %d", band, _settings.Network.TxFrequency); if (band != -1 && _dutyBands[band].TimeOffEnd != 0) { return LORA_NO_CHANS_ENABLED; } } _radio.SetChannel(_settings.Network.TxFrequency); return LORA_OK; } uint8_t start = 0; uint8_t maxChannels = _numChans125k; uint8_t nbEnabledChannels = 0; uint8_t *enabledChannels = new uint8_t[maxChannels]; if (GetTxDatarate().Bandwidth == BW_500) { maxChannels = _numChans500k; start = _numChans125k; } // Search how many channels are enabled DatarateRange range; uint8_t dr_index = _settings.Session.TxDatarate; uint32_t now = _dutyCycleTimer.read_ms(); for (size_t i = 0; i < _dutyBands.size(); i++) { if (_dutyBands[i].TimeOffEnd < now || _settings.Test.DisableDutyCycle == lora::ON) { _dutyBands[i].TimeOffEnd = 0; } } for (uint8_t i = start; i < start + maxChannels; i++) { range = GetChannel(i).DrRange; // logDebug("chan: %d freq: %d range:%02x", i, GetChannel(i).Frequency, range.Value); if (IsChannelEnabled(i) && (dr_index >= range.Fields.Min && dr_index <= range.Fields.Max)) { int8_t band = GetDutyBand(GetChannel(i).Frequency); // logDebug("band: %d freq: %d", band, _channels[i].Frequency); if (band != -1 && _dutyBands[band].TimeOffEnd == 0) { enabledChannels[nbEnabledChannels++] = i; } } } if (GetTxDatarate().Bandwidth == BW_500) { _dutyBands[0].PowerMax = 26; } else { if (nbEnabledChannels < 50) _dutyBands[0].PowerMax = 21; else _dutyBands[0].PowerMax = 30; } logTrace("Number of available channels: %d", nbEnabledChannels); uint32_t freq = 0; uint8_t sf = GetTxDatarate().SpreadingFactor; uint8_t bw = GetTxDatarate().Bandwidth; int16_t thres = DEFAULT_FREE_CHAN_RSSI_THRESHOLD; if (nbEnabledChannels == 0) { delete [] enabledChannels; return LORA_NO_CHANS_ENABLED; } if (_settings.Network.CADEnabled) { // Search for free channel with ms timeout int16_t timeout = 10000; Timer tmr; tmr.start(); for (uint8_t j = rand_r(0, nbEnabledChannels - 1); tmr.read_ms() < timeout; j++) { freq = GetChannel(enabledChannels[j]).Frequency; if (_radio.IsChannelFree(SxRadio::MODEM_LORA, freq, sf, thres, bw)) { _txChannel = enabledChannels[j]; break; } } } else { uint8_t j = rand_r(0, nbEnabledChannels - 1); _txChannel = enabledChannels[j]; freq = GetChannel(_txChannel).Frequency; } assert(freq != 0); logDebug("Using channel %d : %d", _txChannel, freq); _radio.SetChannel(freq); delete [] enabledChannels; return LORA_OK; } uint8_t lora::CustomChannelPlan_US915::GetJoinDatarate() { uint8_t dr = _settings.Session.TxDatarate; if (_settings.Test.DisableRandomJoinDatarate == lora::OFF) { static bool altDatarate = false; if (_settings.Network.ChannelGroup == 0) { static uint16_t used_bands_125k = 0; static uint16_t used_bands_500k = 0; uint8_t chan_group = 0; if (altDatarate) { // 500k channel if (CountBits(used_bands_500k) == 8) { used_bands_500k = 0; } while ((chan_group = rand_r(1, 8)) && (used_bands_500k & (1 << (chan_group - 1))) != 0) ; used_bands_500k |= (1 << (chan_group - 1)); } else { // 125k channel if (CountBits(used_bands_125k) == 8) { used_bands_125k = 0; } while ((chan_group = rand_r(1, 8)) && (used_bands_125k & (1 << (chan_group - 1))) != 0) ; used_bands_125k |= (1 << (chan_group - 1)); } logWarning("JoinDatarate setting channel group to %d 125k: %04x 500k: %04x", chan_group, used_bands_125k, used_bands_500k); SetChannelGroup(chan_group); } if (altDatarate && CountBits(_channelMask[4] > 0)) { dr = lora::DR_4; } else { dr = lora::DR_0; } altDatarate = !altDatarate; } return dr; } uint8_t lora::CustomChannelPlan_US915::CalculateJoinBackoff(uint8_t size) { time_t now = time(NULL); uint32_t time_on_max = 0; static uint32_t time_off_max = 15; uint32_t rand_time_off = 0; static uint16_t join_cnt = 0; // TODO: calc time-off-max based on RTC time from JoinFirstAttempt, time-off-max is lost over sleep if ((time_t)_settings.Session.JoinTimeOffEnd > now) { return LORA_JOIN_BACKOFF; } uint32_t secs_since_first_attempt = (now - _settings.Session.JoinFirstAttempt); uint16_t hours_since_first_attempt = secs_since_first_attempt / (60 * 60); join_cnt = (join_cnt+1) % 16; if (_settings.Session.JoinFirstAttempt == 0) { /* 1 % duty-cycle for first hour * 0.1 % next 10 hours * 0.01 % upto 24 hours */ _settings.Session.JoinFirstAttempt = now; _settings.Session.JoinTimeOnAir += GetTimeOnAir(size); _settings.Session.JoinTimeOffEnd = now + rand_r(_settings.Network.JoinDelay + 2, _settings.Network.JoinDelay + 3); } else if (join_cnt == 0) { if (hours_since_first_attempt < 1) { time_on_max = 36000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (_settings.Session.JoinTimeOnAir < time_on_max) { _settings.Session.JoinTimeOnAir += GetTimeOnAir(size); _settings.Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + 60 * 60; } } else if (hours_since_first_attempt < 11) { if (_settings.Session.JoinTimeOnAir < 36000) { _settings.Session.JoinTimeOnAir = 36000; } time_on_max = 72000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (_settings.Session.JoinTimeOnAir < time_on_max) { _settings.Session.JoinTimeOnAir += GetTimeOnAir(size); _settings.Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + 11 * 60 * 60; } } else { if (_settings.Session.JoinTimeOnAir < 72000) { _settings.Session.JoinTimeOnAir = 72000; } uint32_t join_time = 2500; // 16 join attempts is ~2754 ms, check if this is the third of the 24 hour period time_on_max = 80700; time_off_max = 1 * 60 * 60; // 1 hour rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); if (_settings.Session.JoinTimeOnAir < time_on_max - join_time) { _settings.Session.JoinTimeOnAir += GetTimeOnAir(size); _settings.Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); // Reset the join time on air and set end of restriction to the next 24 hour period _settings.Session.JoinTimeOnAir = 72000; uint16_t days = (now - _settings.Session.JoinFirstAttempt) / (24 * 60 * 60) + 1; logWarning("days : %d", days); _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + ((days * 24) + 11) * 60 * 60; } } logWarning("JoinBackoff: %lu seconds Time On Air: %lu / %lu", _settings.Session.JoinTimeOffEnd - now, _settings.Session.JoinTimeOnAir, time_on_max); } else { _settings.Session.JoinTimeOnAir += GetTimeOnAir(size); _settings.Session.JoinTimeOffEnd = now + rand_r(_settings.Network.JoinDelay + 2, _settings.Network.JoinDelay + 3); } return LORA_OK; }