MultiTech / mDot_Channel_Plans

The channel plans in this library can be used as starting points for new channel plans and used as a reference for implementation.

Information

To use source version of a channel plan, first remove the Channel Plans folder from libmDot-Custom library.

Not all plans are complete to LoRaWAN specifications.

AS923 and KR920 have the default channels defined and can accept in channels in the Join Accept message or from New Channel MAC commands.

Channel Set must match those expected by the network server in order for ADR to work

AS923 regional settings can be adjusted by the network server using Tx Param Setup MAC command to set max EIRP and dwell time for uplinks.

src/CustomChannelPlan_AS923.cpp

Committer:
Jason Reiss
Date:
2017-02-07
Revision:
14:5bbcd92d635a
Parent:
13:996f1663d12e

File content as of revision 14:5bbcd92d635a:

/**********************************************************************
* COPYRIGHT 2016 MULTI-TECH SYSTEMS, INC.
*
* ALL RIGHTS RESERVED BY AND FOR THE EXCLUSIVE BENEFIT OF
* MULTI-TECH SYSTEMS, INC.
*
* MULTI-TECH SYSTEMS, INC. - CONFIDENTIAL AND PROPRIETARY
* INFORMATION AND/OR TRADE SECRET.
*
* NOTICE: ALL CODE, PROGRAM, INFORMATION, SCRIPT, INSTRUCTION,
* DATA, AND COMMENT HEREIN IS AND SHALL REMAIN THE CONFIDENTIAL
* INFORMATION AND PROPERTY OF MULTI-TECH SYSTEMS, INC.
* USE AND DISCLOSURE THEREOF, EXCEPT AS STRICTLY AUTHORIZED IN A
* WRITTEN AGREEMENT SIGNED BY MULTI-TECH SYSTEMS, INC. IS PROHIBITED.
*
***********************************************************************/

#include "CustomChannelPlan_AS923.h"
#include "limits.h"

using namespace lora;

const uint8_t CustomChannelPlan_AS923::AS923_TX_POWERS[] = { 20, 14, 11, 8, 5, 2 };
const uint8_t CustomChannelPlan_AS923::AS923_RADIO_POWERS[] = { 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20 };
const uint8_t CustomChannelPlan_AS923::AS923_MAX_PAYLOAD_SIZE[] = { 51, 51, 51, 115, 242, 242, 242, 242, 0, 0, 0, 0, 0, 0, 0, 0 };
const uint8_t CustomChannelPlan_AS923::AS923_MAX_PAYLOAD_SIZE_REPEATER[] = { 51, 51, 51, 115, 222, 222, 222, 222, 0, 0, 0, 0, 0, 0, 0, 0 };
const uint8_t CustomChannelPlan_AS923::AS923_MAX_PAYLOAD_SIZE_400[] = { 0, 0, 19, 61, 133, 242, 242, 242, 0, 0, 0, 0, 0, 0, 0, 0 };
const uint8_t CustomChannelPlan_AS923::AS923_MAX_PAYLOAD_SIZE_REPEATER_400[] = { 0, 0, 19, 61, 133, 222, 222, 222, 0, 0, 0, 0, 0, 0, 0, 0 };

const uint8_t MAX_ERP_VALUES[] = { 8, 10, 12, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29, 30, 33, 36 };

CustomChannelPlan_AS923::CustomChannelPlan_AS923(SxRadio& radio, Settings& settings)
:
    ChannelPlan(radio, settings)
{

}

CustomChannelPlan_AS923::~CustomChannelPlan_AS923() {

}

void CustomChannelPlan_AS923::Init() {

    _datarates.clear();
    _channels.clear();
    _dutyBands.clear();

    DutyBand band;

    band.Index = 0;
    band.DutyCycle = 0;

    Datarate dr;

    _type = DYNAMIC;
    _planName = "AS923";
    _maxTxPower = 36;
    _minTxPower = 2;

    _minFrequency = 920000000;
    _maxFrequency = 928000000;

    TX_POWERS = AS923_TX_POWERS;
    RADIO_POWERS = AS923_RADIO_POWERS;
    MAX_PAYLOAD_SIZE = AS923_MAX_PAYLOAD_SIZE;
    MAX_PAYLOAD_SIZE_REPEATER = AS923_MAX_PAYLOAD_SIZE_REPEATER;

    _minDatarate = 0;
    _maxDatarate = 7;

    _minRx2Datarate = DR_0;
    _maxRx2Datarate = DR_7;

    _minDatarateOffset = 0;
    _maxDatarateOffset = 7;

    _numChans125k = 16;
    _numChans500k = 0;

    _settings.Session.Rx2Frequency = 923200000;
    _settings.Session.Rx2DatarateIndex = DR_2;
    _settings.Session.Max_EIRP  = 20;

    logInfo("Initialize datarates...");

    dr.SpreadingFactor = SF_12;

    // Add DR0-5
    while (dr.SpreadingFactor >= SF_7) {
        AddDatarate(-1, dr);
        dr.SpreadingFactor--;
        dr.Index++;
    }

    // Add DR6
    dr.SpreadingFactor = SF_7;
    dr.Bandwidth = BW_250;
    AddDatarate(-1, dr);
    dr.Index++;

    // Add DR7
    dr.SpreadingFactor = SF_FSK;
    dr.Bandwidth = BW_FSK;
    dr.PreambleLength = 10;
    dr.Coderate = 0;
    AddDatarate(-1, dr);
    dr.Index++;

    _maxDatarate = DR_7;

    // Skip DR8-15 RFU
    dr.SpreadingFactor = SF_INVALID;
    while (dr.Index++ < DR_15) {
        AddDatarate(-1, dr);
    }

    _settings.Session.TxDatarate = 0;

    logInfo("Initialize channels...");

    Channel chan;
    chan.DrRange.Fields.Min = DR_0;
    chan.DrRange.Fields.Max = DR_5;
    chan.Index = 0;
    chan.Frequency = 923200000;
    SetNumberOfChannels(16);

    for (uint8_t i = 0; i < 2; i++) {
        AddChannel(i, chan);
        chan.Index++;
        chan.Frequency += 200000;
    }

    chan.DrRange.Value = 0;
    chan.Frequency = 0;

    for (uint8_t i = 2; i < 16; i++) {
        AddChannel(i, chan);
        chan.Index++;
    }

    SetChannelMask(0, 0x03);


    // Add downlink channel defaults
    chan.Index = 0;
    _dlChannels.resize(16);
    for (uint8_t i = 0; i < 16; i++) {
        AddDownlinkChannel(i, chan);
        chan.Index++;
    }

    band.Index = 0;
    band.FrequencyMin = _minFrequency;
    band.FrequencyMax = _maxFrequency;
    band.PowerMax = 14;
    band.TimeOffEnd = 0;

    // Disable duty-cycle limits
    band.DutyCycle = 0;

    AddDutyBand(-1, band);
}

uint8_t CustomChannelPlan_AS923::AddChannel(int8_t index, Channel channel) {
    logTrace("Add Channel %d : %lu : %02x %d", index, channel.Frequency, channel.DrRange.Value, _channels.size());

    assert(index < (int) _channels.size());

    if (index >= 0) {
        _channels[index] = channel;
    } else {
        _channels.push_back(channel);
    }

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::HandleJoinAccept(const uint8_t* buffer, uint8_t size) {

    if (size == 33) {
        Channel ch;
        int index = 2;
        for (int i = 13; i < size - 5; i += 3) {

            ch.Frequency = ((buffer[i]) | (buffer[i + 1] << 8) | (buffer[i + 2] << 16)) * 100u;

            if (ch.Frequency > 0) {
                ch.Index = index;
                ch.DrRange.Fields.Min = static_cast<int8_t>(DR_0);
                ch.DrRange.Fields.Max = static_cast<int8_t>(DR_5);
                AddChannel(index, ch);

                if (GetDutyBand(ch.Frequency) > -1)
                    _channelMask[0] |= (1 << index);
                else
                    _channelMask[0] |= ~(1 << index);

                index += 1;
            }
        }
    }

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::SetTxConfig() {

    logInfo("Configure radio for TX");

    Datarate txDr = GetDatarate(_settings.Session.TxDatarate);
    int8_t max_pwr = _settings.Session.Max_EIRP;

    int8_t pwr = 0;

    pwr = std::min < int8_t > (_settings.Session.TxPower, (max_pwr - _settings.Network.AntennaGain));

    for (int i = 20; i >= 0; i--) {
        if (RADIO_POWERS[i] <= pwr) {
            pwr = i;
            break;
        }
        if (i == 0) {
            pwr = i;
        }
    }

    logDebug("Session pwr: %d ant: %d max: %d", _settings.Session.TxPower, _settings.Network.AntennaGain, max_pwr);
    logDebug("Radio Power index: %d output: %d total: %d", pwr, RADIO_POWERS[pwr], RADIO_POWERS[pwr] + _settings.Network.AntennaGain);

    uint32_t bw = txDr.Bandwidth;
    uint32_t sf = txDr.SpreadingFactor;
    uint8_t cr = txDr.Coderate;
    uint8_t pl = txDr.PreambleLength;
    uint16_t fdev = 0;
    bool crc = txDr.Crc;
    bool iq = txDr.TxIQ;

    if (_settings.Network.DisableCRC == true)
        crc = false;

    SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA;

    if (sf == SF_FSK) {
        modem = SxRadio::MODEM_FSK;
        sf = 50e3;
        fdev = 25e3;
        bw = 0;
    }

    _radio.SetTxConfig(modem, pwr, fdev, bw, sf, cr, pl, false, crc, false, 0, iq, 3e3);

    logDebug("TX PWR: %u DR: %u SF: %u BW: %u CR: %u PL: %u CRC: %d IQ: %d", pwr, txDr.Index, sf, bw, cr, pl, crc, iq);

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::SetRxConfig(uint8_t window, bool continuous) {

    RxWindow rxw = GetRxWindow(window);

    if (_dlChannels[_txChannel].Frequency != 0)
        _radio.SetChannel(_dlChannels[_txChannel].Frequency);
    else
        _radio.SetChannel(rxw.Frequency);

    Datarate rxDr = GetDatarate(rxw.DatarateIndex);
    uint32_t bw = rxDr.Bandwidth;
    uint32_t sf = rxDr.SpreadingFactor;
    uint8_t cr = rxDr.Coderate;
    uint8_t pl = rxDr.PreambleLength;
    uint16_t sto = rxDr.SymbolTimeout();
    uint32_t afc = 0;
    bool crc = rxDr.Crc;

    if (_settings.Network.DisableCRC == true)
        crc = false;

    Datarate txDr = GetDatarate(_settings.Session.TxDatarate);
    bool iq = txDr.RxIQ;

    if (P2PEnabled()) {
        iq = txDr.TxIQ;
    }

    SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA;

    if (sf == SF_FSK) {
        modem = SxRadio::MODEM_FSK;
        sf = 50e3;
        cr = 0;
        bw = 50e3;
        afc = 83333;
        iq = false;
    }

    // Disable printf's to actually receive packets, printing to debug may mess up the timing
    // logTrace("Configure radio for RX%d on freq: %lu", window, rxw.Frequency);
    // logTrace("RX SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", sf, bw, cr, pl, sto, crc, iq);

    _radio.SetRxConfig(modem, bw, sf, cr, afc, pl, sto, false, 0, crc, false, 0, iq, continuous);

    return LORA_OK;
}

Channel CustomChannelPlan_AS923::GetChannel(int8_t index) {
    Channel chan;
    memset(&chan, 0, sizeof(Channel));

    chan = _channels[index];

    return chan;
}

uint8_t CustomChannelPlan_AS923::SetChannelGroup(uint8_t group) {
    return LORA_OK;
}

void CustomChannelPlan_AS923::LogRxWindow(uint8_t wnd) {

    RxWindow rxw = GetRxWindow(wnd);
    Datarate rxDr = GetDatarate(rxw.DatarateIndex);
    uint8_t bw = rxDr.Bandwidth;
    uint8_t sf = rxDr.SpreadingFactor;
    uint8_t cr = rxDr.Coderate;
    uint8_t pl = rxDr.PreambleLength;
    uint16_t sto = rxDr.SymbolTimeout();
    bool crc = rxDr.Crc;
    bool iq = GetTxDatarate().RxIQ;
    uint32_t freq = rxw.Frequency;

    if (_dlChannels[_txChannel].Frequency != 0)
        freq = _dlChannels[_txChannel].Frequency;

    logTrace("RX%d on freq: %lu", wnd, freq);
    logTrace("RX DR: %u SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", rxDr.Index, sf, bw, cr, pl, sto, crc, iq);
}

uint8_t CustomChannelPlan_AS923::GetMaxPayloadSize() {
    if (_settings.Session.UplinkDwelltime == 1) {
        if (_settings.Network.RepeaterMode)
            return AS923_MAX_PAYLOAD_SIZE_REPEATER_400[_settings.Session.TxDatarate];
        else
            return AS923_MAX_PAYLOAD_SIZE_400[_settings.Session.TxDatarate];
    } else {
        if (_settings.Network.RepeaterMode)
            return MAX_PAYLOAD_SIZE_REPEATER[_settings.Session.TxDatarate];
        else
            return MAX_PAYLOAD_SIZE[_settings.Session.TxDatarate];
    }
}

RxWindow CustomChannelPlan_AS923::GetRxWindow(uint8_t window) {
    RxWindow rxw;
    int index = 0;

    if (P2PEnabled()) {
        rxw.Frequency = _settings.Network.TxFrequency;
        index = _settings.Session.TxDatarate;
    } else {
        if (window == 1) {
            // Use same frequency as TX
            rxw.Frequency = _channels[_txChannel].Frequency;

            if (_settings.Session.Rx1DatarateOffset >= 6) {
                index =  _settings.Session.TxDatarate + (_settings.Session.Rx1DatarateOffset == 6 ? 1 : 2);
                index = std::min<int>(index, _maxDatarate);
            } else if (_settings.Session.TxDatarate > _settings.Session.Rx1DatarateOffset) {
                index = _settings.Session.TxDatarate - _settings.Session.Rx1DatarateOffset;
            } else {
                index = 0;
            }

        } else {
            // Use session RX2 frequency
            rxw.Frequency = _settings.Session.Rx2Frequency;
            index = _settings.Session.Rx2DatarateIndex;
        }
    }

    rxw.DatarateIndex = index;

    return rxw;
}

uint8_t CustomChannelPlan_AS923::HandleRxParamSetup(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) {
    status = 0x07;
    int8_t datarate = 0;
    int8_t drOffset = 0;
    uint32_t freq = 0;

    drOffset = payload[index++];
    datarate = drOffset & 0x0F;
    drOffset = (drOffset >> 4) & 0x07;

    freq = payload[index++];
    freq |= payload[index++] << 8;
    freq |= payload[index++] << 16;
    freq *= 100;

    if (!CheckRfFrequency(freq)) {
        logInfo("Freq KO");
        status &= 0xFE; // Channel frequency KO
    }

    if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) {
        logInfo("DR KO");
        status &= 0xFD; // Datarate KO
    }

    if (drOffset < 0 || drOffset > _maxDatarateOffset) {
        logInfo("DR Offset KO");
        status &= 0xFB; // Rx1DrOffset range KO
    }

    if ((status & 0x07) == 0x07) {
        logInfo("RxParamSetup accepted Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset);
        SetRx2DatarateIndex(datarate);
        SetRx2Frequency(freq);
        SetRx1Offset(drOffset);
    } else {
        logInfo("RxParamSetup rejected Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset);
    }

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::HandleNewChannel(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) {

    status = 0x03;
    uint8_t channelIndex = 0;
    Channel chParam;

    channelIndex = payload[index++];
    lora::CopyFreqtoInt(payload + index, chParam.Frequency);
    index += 3;
    chParam.DrRange.Value = payload[index++];

    if (channelIndex < 2 || channelIndex > _channels.size() - 1) {
        logError("New Channel index KO");
        status &= 0xFE; // Channel index KO
    }

    if (!_radio.CheckRfFrequency(chParam.Frequency)) {
        logError("New Channel frequency KO");
        status &= 0xFE; // Channel frequency KO
    }

    if (chParam.DrRange.Fields.Min > chParam.DrRange.Fields.Max) {
        logError("New Channel datarate min/max KO");
        status &= 0xFD; // Datarate range KO
    } else if (chParam.DrRange.Fields.Min < _minDatarate || chParam.DrRange.Fields.Min > _maxDatarate) {
        logError("New Channel datarate min KO");
        status &= 0xFD; // Datarate range KO
    } else if (chParam.DrRange.Fields.Max < _minDatarate || chParam.DrRange.Fields.Max > _maxDatarate) {
        logError("New Channel datarate max KO");
        status &= 0xFD; // Datarate range KO
    }

    if ((status & 0x03) == 0x03) {
        logInfo("New Channel accepted index: %d freq: %lu drRange: %02x", channelIndex, chParam.Frequency, chParam.DrRange.Value);
        AddChannel(channelIndex, chParam);
        SetChannelMask(0, _channelMask[0] | 1 << (channelIndex));
    }

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::HandlePingSlotChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) {

    lora::CopyFreqtoInt(payload + index, _beaconRxChannel.Frequency);
    index += 3;

    if (_beaconRxChannel.Frequency != 0) {
        _beaconRxChannel.DrRange.Value = payload[index];
    } else {
        // TODO: set to default beacon rx channel
    }

    status = 0x03;
    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::HandleBeaconFrequencyReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) {

    status = 0x03;
    Channel chParam;

    // Skip channel index
    index++;

    lora::CopyFreqtoInt(payload + index, chParam.Frequency);
    index += 3;
    chParam.DrRange.Value = payload[index++];

    if (!_radio.CheckRfFrequency(chParam.Frequency)) {
        status &= 0xFE; // Channel frequency KO
    }

    if (chParam.DrRange.Fields.Min < chParam.DrRange.Fields.Max) {
        status &= 0xFD; // Datarate range KO
    } else if (chParam.DrRange.Fields.Min < _minDatarate || chParam.DrRange.Fields.Min > _maxDatarate) {
        status &= 0xFD; // Datarate range KO
    } else if (chParam.DrRange.Fields.Max < _minDatarate || chParam.DrRange.Fields.Max > _maxDatarate) {
        status &= 0xFD; // Datarate range KO
    }

    if ((status & 0x03) == 0x03) {
        _beaconChannel = chParam;
    }

    if (_beaconChannel.Frequency == 0) {
        // TODO: Set to default
    }

    status = 0x01;

    return LORA_OK;
}

bool CustomChannelPlan_AS923::AdrAckReq() {
    if (_settings.Network.ADREnabled == false)
        return false;

    bool ret = false;

    if (_settings.Session.TxDatarate == MIN_DATARATE) {
        _settings.Session.AdrCounter = 0;
    } else {
        logDebug("ADR ACK CNT: %d LIMIT: %d DELAY: %d", _settings.Session.AdrCounter, ADR_ACK_LIMIT, ADR_ACK_DELAY);

        ret = (_settings.Session.AdrCounter >= ADR_ACK_LIMIT);

        if (_settings.Session.AdrCounter >= (ADR_ACK_LIMIT + ADR_ACK_DELAY)) {
            if ((_settings.Session.AdrCounter - 1) % ADR_ACK_DELAY == 0) {

                if (_settings.Session.TxDatarate > MIN_DATARATE) {
                    _settings.Session.TxDatarate--;
                }

                if (_settings.Session.TxDatarate == MIN_DATARATE) {
                    EnableDefaultChannels();
                }
            }
        }

    }

    return ret;
}

uint8_t CustomChannelPlan_AS923::HandleAdrCommand(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) {

    uint8_t power = 0;
    uint8_t datarate = 0;
    uint16_t mask = 0;
    uint8_t ctrl = 0;
    uint8_t nbRep = 0;

    status = 0x07;
    datarate = payload[index++];
    power = datarate & 0x0F;
    datarate = (datarate >> 4) & 0x0F;

    mask = payload[index++];
    mask |= payload[index++] << 8;

    nbRep = payload[index++];
    ctrl = (nbRep >> 4) & 0x07;
    nbRep &= 0x0F;

    if (nbRep == 0) {
        nbRep = 1;
    }

    if (!(mask == 0 && ctrl == 0)) {
        if (ctrl == 5) {
            mask = 0;
            ctrl = 0;
        }
    }

    if (datarate > _maxDatarate) {
        logDebug("ADR Datarate KO");
        status &= 0xFD; // Datarate KO
    }
    //
    // Remark MaxTxPower = 0 and MinTxPower = 5
    //
    if (power > 5) {
        logDebug("ADR TxPower KO");
        status &= 0xFB; // TxPower KO
    }

    if ((status & 0x07) == 0x07) {
        logDebug("ADR settings accepted");

        if (_settings.Network.ADREnabled) {
            _settings.Session.TxDatarate = datarate;
            _settings.Session.TxPower = _settings.Session.Max_EIRP - (power * 2);
        } else {
            logInfo("ADR is disabled, DR and Power not changed.");
            status &= 0xFB; // TxPower KO
            status &= 0xFD; // Datarate KO
        }

        if (!(mask == 0 && ctrl == 0) || ((mask >= 1 && ctrl <= 5) || ctrl == 7)) {
            for (uint8_t i = 0; i < _numChans125k; i++) {
                if (ctrl == 6) {
                    // enable all defined channels
                    if (_channels[i].Frequency != 0) {
                        mask |= 1 << i;
                    }
                } else {
                    if (((mask & (1 << i)) != 0) && (_channels[i].Frequency == 0)) {
                        // Trying to enable an undefined channel
                        status &= 0xFE; // Channel mask KO
                    }
                }
            }
            SetChannelMask(0, mask);
        } else {
            if (mask == 0 && ctrl == 0) {
                logWarning("Rejecting ADR command to disable all channels");
            }
            status &= 0xFE;
        }
        _settings.Session.Redundancy = nbRep;
    }


    logDebug("ADR DR: %u PWR: %u Ctrl: %02x Mask: %04x NbRep: %u Stat: %02x", datarate, power, ctrl, mask, nbRep, status);

    return LORA_OK;
}

uint8_t CustomChannelPlan_AS923::HandleAckTimeout() {

    if (!_settings.Network.ADREnabled) {
        return LORA_ADR_OFF;
    }

    if ((++_settings.Session.AckCounter % 2) == 0) {
        if (_settings.Session.TxPower < _settings.Network.TxPowerMax) {
            logTrace("ADR Setting power to maximum");
            _settings.Session.TxPower = _settings.Network.TxPowerMax;
        } else if (_settings.Session.TxDatarate > 0) {
            logTrace("ADR Lowering datarate");
            _settings.Session.TxDatarate--;
        }
    }

    return LORA_OK;
}


uint32_t CustomChannelPlan_AS923::GetTimeOffAir()
{
    if (_settings.Test.DisableDutyCycle == lora::ON)
        return 0;

    uint32_t min = 0;
    uint32_t now = _dutyCycleTimer.read_ms();


    min = UINT_MAX;
    int8_t band = 0;

    if (P2PEnabled()) {
        int8_t band = GetDutyBand(_settings.Network.TxFrequency);
        if (_dutyBands[band].TimeOffEnd > now) {
            min = _dutyBands[band].TimeOffEnd - now;
        } else {
            min = 0;
        }
    } else {
        for (size_t i = 0; i < _channels.size(); i++) {
            if (IsChannelEnabled(i) && GetChannel(i).Frequency != 0 &&
                !(_settings.Session.TxDatarate < GetChannel(i).DrRange.Fields.Min ||
                  _settings.Session.TxDatarate > GetChannel(i).DrRange.Fields.Max)) {

                band = GetDutyBand(GetChannel(i).Frequency);
                if (band != -1) {
                    // logDebug("band: %d time-off: %d now: %d", band, _dutyBands[band].TimeOffEnd, now);
                    if (_dutyBands[band].TimeOffEnd > now) {
                        min = std::min < uint32_t > (min, _dutyBands[band].TimeOffEnd - now);
                    } else {
                        min = 0;
                        break;
                    }
                }
            }
        }
    }


    if (_settings.Session.AggregatedTimeOffEnd > 0 && _settings.Session.AggregatedTimeOffEnd > now) {
        min = std::max < uint32_t > (min, _settings.Session.AggregatedTimeOffEnd - now);
    }

    now = time(NULL);
    uint32_t join_time = 0;

    if (_settings.Session.JoinFirstAttempt != 0 && now < _settings.Session.JoinTimeOffEnd) {
        join_time = (_settings.Session.JoinTimeOffEnd - now) * 1000;
    }

    min = std::max < uint32_t > (join_time, min);

    return min;
}


void CustomChannelPlan_AS923::UpdateDutyCycle(uint32_t freq, uint32_t time_on_air_ms) {
    if (_settings.Test.DisableDutyCycle == lora::ON) {
        _dutyCycleTimer.stop();
        for (size_t i = 0; i < _dutyBands.size(); i++) {
            _dutyBands[i].TimeOffEnd = 0;
        }
        return;
    }

    _dutyCycleTimer.start();

    if (_settings.Session.MaxDutyCycle > 0 && _settings.Session.MaxDutyCycle <= 15) {
        _settings.Session.AggregatedTimeOffEnd = _dutyCycleTimer.read_ms() + time_on_air_ms * _settings.Session.AggregateDutyCycle;
        logDebug("Updated Aggregate DCycle Time-off: %lu DC: %f%%", _settings.Session.AggregatedTimeOffEnd, 1 / float(_settings.Session.AggregateDutyCycle));
    } else {
        _settings.Session.AggregatedTimeOffEnd = 0;
    }


    uint32_t time_off_air = 0;
    uint32_t now = _dutyCycleTimer.read_ms();

    for (size_t i = 0; i < _dutyBands.size(); i++) {
        if (_dutyBands[i].TimeOffEnd < now) {
            _dutyBands[i].TimeOffEnd = 0;
        } else {
            _dutyBands[i].TimeOffEnd -= now;
        }

        if (freq >= _dutyBands[i].FrequencyMin && freq <= _dutyBands[i].FrequencyMax) {
            logDebug("update TOE: freq: %d i:%d toa: %d DC:%d", freq, i, time_on_air_ms, _dutyBands[i].DutyCycle);

            if (freq > _minFrequency && freq < _maxFrequency && (_settings.Session.TxPower + _settings.Network.AntennaGain) <= 7) {
                _dutyBands[i].TimeOffEnd = 0;
            } else {
                time_off_air = time_on_air_ms * _dutyBands[i].DutyCycle;
                _dutyBands[i].TimeOffEnd = time_off_air;
            }
        }
    }


    ResetDutyCycleTimer();
}

std::vector<uint32_t> lora::CustomChannelPlan_AS923::GetChannels() {
    std::vector < uint32_t > chans;

    for (int8_t i = 0; i < (int) _channels.size(); i++) {
        chans.push_back(_channels[i].Frequency);
    }
    chans.push_back(GetRxWindow(2).Frequency);

    return chans;
}

std::vector<uint8_t> lora::CustomChannelPlan_AS923::GetChannelRanges() {
    std::vector < uint8_t > ranges;

    for (int8_t i = 0; i < (int) _channels.size(); i++) {
        ranges.push_back(_channels[i].DrRange.Value);
    }

    ranges.push_back(GetRxWindow(2).DatarateIndex);

    return ranges;

}

void lora::CustomChannelPlan_AS923::EnableDefaultChannels() {
    _channelMask[0] |= 0x0003;
}

uint8_t CustomChannelPlan_AS923::GetNextChannel()
{
    if (_settings.Session.AggregatedTimeOffEnd != 0) {
        return LORA_AGGREGATED_DUTY_CYCLE;
    }

    if (P2PEnabled() || _settings.Network.TxFrequency != 0) {
        logDebug("Using frequency %d", _settings.Network.TxFrequency);

        if (_settings.Test.DisableDutyCycle != lora::ON) {
            int8_t band = GetDutyBand(_settings.Network.TxFrequency);
            logDebug("band: %d freq: %d", band, _settings.Network.TxFrequency);
            if (band != -1 && _dutyBands[band].TimeOffEnd != 0) {
                return LORA_NO_CHANS_ENABLED;
            }
        }

        _radio.SetChannel(_settings.Network.TxFrequency);
        return LORA_OK;
    }

    uint8_t start = 0;
    uint8_t maxChannels = _numChans125k;
    uint8_t nbEnabledChannels = 0;
    uint8_t *enabledChannels = new uint8_t[maxChannels];

    if (GetTxDatarate().Bandwidth == BW_500) {
        maxChannels = _numChans500k;
        start = _numChans125k;
    }

// Search how many channels are enabled
    DatarateRange range;
    uint8_t dr_index = _settings.Session.TxDatarate;
    uint32_t now = _dutyCycleTimer.read_ms();

    for (size_t i = 0; i < _dutyBands.size(); i++) {
        if (_dutyBands[i].TimeOffEnd < now || _settings.Test.DisableDutyCycle == lora::ON) {
            _dutyBands[i].TimeOffEnd = 0;
        }
    }

    for (uint8_t i = start; i < start + maxChannels; i++) {
        range = GetChannel(i).DrRange;
        // logDebug("chan: %d freq: %d range:%02x", i, GetChannel(i).Frequency, range.Value);

        if (IsChannelEnabled(i) && (dr_index >= range.Fields.Min && dr_index <= range.Fields.Max)) {
            int8_t band = GetDutyBand(GetChannel(i).Frequency);
            // logDebug("band: %d freq: %d", band, _channels[i].Frequency);
            if (band != -1 && _dutyBands[band].TimeOffEnd == 0) {
                enabledChannels[nbEnabledChannels++] = i;
            }
        }
    }

    logTrace("Number of available channels: %d", nbEnabledChannels);

    uint32_t freq = 0;
    uint8_t sf = GetTxDatarate().SpreadingFactor;
    uint8_t bw = GetTxDatarate().Bandwidth;
    int16_t thres = DEFAULT_FREE_CHAN_RSSI_THRESHOLD;

    if (nbEnabledChannels == 0) {
        delete [] enabledChannels;
        return LORA_NO_CHANS_ENABLED;
    }

    if (_settings.Network.CADEnabled) {
        // Search for free channel with ms timeout
        int16_t timeout = 10000;
        Timer tmr;
        tmr.start();

        for (uint8_t j = rand_r(0, nbEnabledChannels - 1); tmr.read_ms() < timeout; j++) {
            freq = GetChannel(enabledChannels[j]).Frequency;

            // Listen before talk
            if (_radio.IsChannelFree(SxRadio::MODEM_LORA, freq, sf, thres, bw)) {
                _txChannel = enabledChannels[j];
                break;
            }
        }
    } else {
        uint8_t j = rand_r(0, nbEnabledChannels - 1);
        _txChannel = enabledChannels[j];
        freq = GetChannel(_txChannel).Frequency;
    }

    assert(freq != 0);

    logDebug("Using channel %d : %d", _txChannel, freq);
    _radio.SetChannel(freq);

    delete [] enabledChannels;
    return LORA_OK;
}


uint8_t lora::CustomChannelPlan_AS923::GetJoinDatarate() {
    uint8_t dr = _settings.Session.TxDatarate;
    
    // Default join datarate is DR2:SF10BW125
    dr = lora::DR_2;
    
    return dr;
}

uint8_t CustomChannelPlan_AS923::CalculateJoinBackoff(uint8_t size) {

    time_t now = time(NULL);
    uint32_t time_on_max = 0;
    static uint32_t time_off_max = 15;
    uint32_t rand_time_off = 0;

    // TODO: calc time-off-max based on RTC time from JoinFirstAttempt, time-off-max is lost over sleep

    if ((time_t)_settings.Session.JoinTimeOffEnd > now) {
        return LORA_JOIN_BACKOFF;
    }

    uint32_t secs_since_first_attempt = (now - _settings.Session.JoinFirstAttempt);
    uint16_t hours_since_first_attempt = secs_since_first_attempt / (60 * 60);

    static uint8_t join_cnt = 0;

    join_cnt = (join_cnt+1) % 8;

    if (_settings.Session.JoinFirstAttempt == 0) {
        /* 1 % duty-cycle for first hour
         * 0.1 % next 10 hours
         * 0.01 % upto 24 hours         */
        _settings.Session.JoinFirstAttempt = now;
        _settings.Session.JoinTimeOnAir += GetTimeOnAir(size);
        _settings.Session.JoinTimeOffEnd = now + (GetTimeOnAir(size) / 10);
    } else if (join_cnt == 0) {
        if (hours_since_first_attempt < 1) {
            time_on_max = 36000;
            rand_time_off = rand_r(time_off_max - 1, time_off_max + 1);
            // time off max 1 hour
            time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60);

            if (_settings.Session.JoinTimeOnAir < time_on_max) {
                _settings.Session.JoinTimeOnAir += GetTimeOnAir(size);
                _settings.Session.JoinTimeOffEnd = now + rand_time_off;
            } else {
                logWarning("Max time-on-air limit met for current join backoff period");
                _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + 60 * 60;
            }
        } else if (hours_since_first_attempt < 11) {
            if (_settings.Session.JoinTimeOnAir < 36000) {
                _settings.Session.JoinTimeOnAir = 36000;
            }
            time_on_max = 72000;
            rand_time_off = rand_r(time_off_max - 1, time_off_max + 1);
            // time off max 1 hour
            time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60);

            if (_settings.Session.JoinTimeOnAir < time_on_max) {
                _settings.Session.JoinTimeOnAir += GetTimeOnAir(size);
                _settings.Session.JoinTimeOffEnd = now + rand_time_off;
            } else {
                logWarning("Max time-on-air limit met for current join backoff period");
                _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + 11 * 60 * 60;
            }
        } else {
            if (_settings.Session.JoinTimeOnAir < 72000) {
                _settings.Session.JoinTimeOnAir = 72000;
            }
            uint32_t join_time = 2500;

            time_on_max = 80700;
            time_off_max = 1 * 60 * 60; // 1 hour
            rand_time_off = rand_r(time_off_max - 1, time_off_max + 1);

            if (_settings.Session.JoinTimeOnAir < time_on_max - join_time) {
                _settings.Session.JoinTimeOnAir += GetTimeOnAir(size);
                _settings.Session.JoinTimeOffEnd = now + rand_time_off;
            } else {
                logWarning("Max time-on-air limit met for current join backoff period");
                // Reset the join time on air and set end of restriction to the next 24 hour period
                _settings.Session.JoinTimeOnAir = 72000;
                uint16_t days = (now - _settings.Session.JoinFirstAttempt) / (24 * 60 * 60) + 1;
                logWarning("days : %d", days);
                _settings.Session.JoinTimeOffEnd = _settings.Session.JoinFirstAttempt + ((days * 24) + 11) * 60 * 60;
            }
        }

        logWarning("JoinBackoff: %lu seconds  Time On Air: %lu / %lu", _settings.Session.JoinTimeOffEnd - now, _settings.Session.JoinTimeOnAir, time_on_max);
    } else {
        _settings.Session.JoinTimeOnAir += GetTimeOnAir(size);
        _settings.Session.JoinTimeOffEnd = now + (GetTimeOnAir(size) / 10);
    }

    return LORA_OK;
}


uint8_t CustomChannelPlan_AS923::HandleMacCommands(uint8_t* payload, uint8_t index, uint8_t end_index) {

    uint8_t ret = LORA_OK;

    logDebug("AS923 Handle Mac index: %d end: %d", index, end_index);

    while (index < end_index) {
        switch (payload[index++]) {
            case SRV_MAC_TX_PARAM_SETUP_REQ: {
                uint8_t eirp_dwell = payload[index++];

                // zero out command for MAC layer to skip
                payload[index-2] = 0;
                payload[index-1] = 0;

                _settings.Session.DownlinkDwelltime = eirp_dwell >> 5 & 0x01;
                _settings.Session.UplinkDwelltime = eirp_dwell >> 4 & 0x01;
                _settings.Session.Max_EIRP = MAX_ERP_VALUES[(eirp_dwell & 0x0F)];
                logDebug("buffer index %d", _settings.Session.CommandBufferIndex);
                if (_settings.Session.CommandBufferIndex < COMMANDS_BUFFER_SIZE) {
                    logDebug("Add tx param setup mac cmd to buffer");
                    _settings.Session.CommandBuffer[_settings.Session.CommandBufferIndex++] = MOTE_MAC_TX_PARAM_SETUP_ANS;
                }

                logDebug("TX PARAM DWELL UL: %d DL: %d Max EIRP: %d", _settings.Session.UplinkDwelltime, _settings.Session.DownlinkDwelltime, _settings.Session.Max_EIRP);
            }
                break;
            case SRV_MAC_DL_CHANNEL_REQ: {
                uint8_t status = 0x03;
                uint8_t channelIndex = 0;
                Channel chParam;

                channelIndex = payload[index++];
                lora::CopyFreqtoInt(payload + index, chParam.Frequency);
                index += 3;

                // zero out command for MAC layer to skip
                payload[index-4] = 0;
                payload[index-3] = 0;
                payload[index-2] = 0;
                payload[index-1] = 0;

                chParam.Index = channelIndex;
                chParam.DrRange.Value = 0;

                if (channelIndex > 15) {
                    status = 0x00;
                } else if (_channels[channelIndex].Frequency == 0) {
                    status &= 0x02;
                } else if (chParam.Frequency != 0 && (chParam.Frequency < _minFrequency || chParam.Frequency > _maxFrequency)) {
                    status &= 0x01;
                }

                if (status == 0x03 && _settings.Session.CommandBufferIndex+1 < COMMANDS_BUFFER_SIZE) {
                    AddDownlinkChannel(channelIndex, chParam);
                }

                _settings.Session.DlChannelReqAnswer = status;

                logDebug("DL Channel: index: %d freq: %d status: %d", channelIndex, chParam.Frequency, status);
            }
                break;
        }
    }

    return ret;
}