Stable version of the xDot library for mbed 5. This version of the library is suitable for deployment scenarios.
Dependents: Dot-Examples XDOT-Devicewise Dot-Examples-delujoc Dot-Examples_receive ... more
Fork of libxDot-dev-mbed5-deprecated by
The Dot library provides a LoRaWan certified stack for LoRa communication using MultiTech mDot and xDot devices. The stack is compatible with mbed 5.
The name of the repository can be used to determine which device the stack was compiled for and if it's a development or production-ready build:
- libmDot-mbed5 -> production-ready build for mDot
- libmDot-dev-mbed5 -> development build for mDot
- libxDot-mbed5 -> production-ready build for xDot
- libxDot-dev-mbed5 -> development build for xDot
A changelog for the Dot library can be found here.
The Dot library version and the version of mbed-os it was compiled against can both be found in the commit message for that revision of the Dot library. Building your application with the same version of mbed-os as what was used to build the Dot library is highly recommended!
The Dot-Examples repository demonstrates how to use the Dot library in a custom application.
The mDot and xDot platform pages have lots of platform specific information and document potential issues, gotchas, etc, and provide instructions for getting started with development. Please take a look at the platform page before starting development as they should answer many questions you will have.
FOTA
Full FOTA support is only available with mDot, xDot does not have the required external flash. xDot can use the FOTA example to dynamically join a multicast session only. After joining the multicast session the received Fragmentation packets could be handed to a host MCU for processing and at completion the firmware can be loaded into the xDot using the bootloader and y-modem. See xDot Developer Guide.
- Add the following code to allow Fota to use the Dot instance
examples/src/fota_example.cpp
// Initialize FOTA singleton Fota::getInstance(dot);
- Add fragmentation handling the the PacketRx event
examples/inc/RadioEvent.h
virtual void PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, bool dupRx) { mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, dupRx); #if ACTIVE_EXAMPLE == FOTA_EXAMPLE if(port == 200 || port == 201 || port == 202) { Fota::getInstance()->processCmd(payload, port, size); } #endif }
The FOTA implementation has a few differences from the LoRaWAN Protocol
- Fragmentation Indexing starts at 0
- McKEKey is 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
- Start Time is a count-down in seconds to start of session
SxRadio.h
- Committer:
- Jenkins@KEILDM1.dc.multitech.prv
- Date:
- 2017-07-27
- Revision:
- 11:be2a6466d680
- Child:
- 14:f0c24ce93427
File content as of revision 11:be2a6466d680:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2013 Semtech Description: Generic radio driver definition License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Miguel Luis and Gregory Cristian */ #ifndef __SXRADIO_H__ #define __SXRADIO_H__ #include <stdint.h> #include "rtos.h" #include "SxRadioEvents.h" /*! * \brief Radio driver definition */ class SxRadio { public: /*! * Radio driver supported modems */ typedef enum { MODEM_FSK = 0, MODEM_LORA, }RadioModems_t; /*! * Radio driver internal state machine states definition */ typedef enum { RF_IDLE = 0, RF_RX_RUNNING, RF_TX_RUNNING, RF_CAD, }RadioState_t; SxRadio(uint32_t WakeupTime) : WakeupTime(WakeupTime), State(RF_IDLE), Modem(MODEM_LORA) { } virtual ~SxRadio() {}; /*! * \brief Initializes the radio * * \param [IN] events Structure containing the driver callback functions */ virtual void Init( SxRadioEvents *events ) = 0; /*! * \brief Prepares the radio for destruction */ virtual void Terminate( void ) = 0; /*! * Return current radio status * * \param status Radio status.[RF_IDLE, RF_RX_RUNNING, RF_TX_RUNNING] */ virtual RadioState_t Status( void ) { return State; } /*! * \brief Configures the radio with the given modem * * \param [IN] modem Modem to be used [0: FSK, 1: LoRa] */ virtual void SetModem( RadioModems_t modem ) = 0; /*! * \brief Sets the channel frequency * * \param [IN] freq Channel RF frequency */ virtual void SetChannel( uint32_t freq ) = 0; /*! * \brief Sets the channels configuration * * \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa] * \param [IN] freq Channel RF frequency * \param [IN] rssiThresh RSSI threshold * \param [IN] rssiVal pointer to variable to hold RSSI value if desired - ignored if NULL * * \retval isFree [true: Channel is free, false: Channel is not free] */ virtual bool IsChannelFree( RadioModems_t modem, uint32_t freq, uint8_t datarate, int16_t rssiThresh, uint8_t bandwidth, uint32_t timeout = 5000, int16_t *rssiVal = NULL ) = 0; /*! * \brief Generates a 32 bits random value based on the RSSI readings * * \remark This function sets the radio in LoRa modem mode and disables * all interrupts. * After calling this function either Radio.SetRxConfig or * Radio.SetTxConfig functions must be called. * * \retval randomValue 32 bits random value */ virtual uint32_t Random( void ) = 0; /*! * \brief Sets the reception parameters * * \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa] * \param [IN] bandwidth Sets the bandwidth * FSK : >= 2600 and <= 250000 Hz * LoRa: [0: 125 kHz, 1: 250 kHz, * 2: 500 kHz, 3: Reserved] * \param [IN] datarate Sets the Datarate * FSK : 600..300000 bits/s * LoRa: [6: 64, 7: 128, 8: 256, 9: 512, * 10: 1024, 11: 2048, 12: 4096 chips] * \param [IN] coderate Sets the coding rate (LoRa only) * FSK : N/A ( set to 0 ) * LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8] * \param [IN] bandwidthAfc Sets the AFC Bandwidth (FSK only) * FSK : >= 2600 and <= 250000 Hz * LoRa: N/A ( set to 0 ) * \param [IN] preambleLen Sets the Preamble length * FSK : Number of bytes * LoRa: Length in symbols (the hardware adds 4 more symbols) * \param [IN] symbTimeout Sets the RxSingle timeout value (LoRa only) * FSK : N/A ( set to 0 ) * LoRa: timeout in symbols * \param [IN] fixLen Fixed length packets [0: variable, 1: fixed] * \param [IN] payloadLen Sets payload length when fixed length is used * \param [IN] crcOn Enables/Disables the CRC [0: OFF, 1: ON] * \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping * FSK : N/A ( set to 0 ) * LoRa: [0: OFF, 1: ON] * \param [IN] HopPeriod Number of symbols bewteen each hop * FSK : N/A ( set to 0 ) * LoRa: Number of symbols * \param [IN] iqInverted Inverts IQ signals (LoRa only) * FSK : N/A ( set to 0 ) * LoRa: [0: not inverted, 1: inverted] * \param [IN] rxContinuous Sets the reception in continuous mode * [false: single mode, true: continuous mode] */ virtual void SetRxConfig( RadioModems_t modem, uint32_t bandwidth, uint32_t datarate, uint8_t coderate, uint32_t bandwidthAfc, uint16_t preambleLen, uint16_t symbTimeout, bool fixLen, uint8_t payloadLen, bool crcOn, bool FreqHopOn, uint8_t HopPeriod, bool iqInverted, bool rxContinuous ) = 0; /*! * \brief Sets the transmission parameters * * \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa] * \param [IN] power Sets the output power [dBm] * \param [IN] fdev Sets the frequency deviation (FSK only) * FSK : [Hz] * LoRa: 0 * \param [IN] bandwidth Sets the bandwidth (LoRa only) * FSK : 0 * LoRa: [0: 125 kHz, 1: 250 kHz, * 2: 500 kHz, 3: Reserved] * \param [IN] datarate Sets the Datarate * FSK : 600..300000 bits/s * LoRa: [6: 64, 7: 128, 8: 256, 9: 512, * 10: 1024, 11: 2048, 12: 4096 chips] * \param [IN] coderate Sets the coding rate (LoRa only) * FSK : N/A ( set to 0 ) * LoRa: [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8] * \param [IN] preambleLen Sets the preamble length * FSK : Number of bytes * LoRa: Length in symbols (the hardware adds 4 more symbols) * \param [IN] fixLen Fixed length packets [0: variable, 1: fixed] * \param [IN] crcOn Enables disables the CRC [0: OFF, 1: ON] * \param [IN] FreqHopOn Enables disables the intra-packet frequency hopping * FSK : N/A ( set to 0 ) * LoRa: [0: OFF, 1: ON] * \param [IN] HopPeriod Number of symbols bewteen each hop * FSK : N/A ( set to 0 ) * LoRa: Number of symbols * \param [IN] iqInverted Inverts IQ signals (LoRa only) * FSK : N/A ( set to 0 ) * LoRa: [0: not inverted, 1: inverted] * \param [IN] timeout Transmission timeout [us] */ virtual void SetTxConfig( RadioModems_t modem, int8_t power, uint32_t fdev, uint32_t bandwidth, uint32_t datarate, uint8_t coderate, uint16_t preambleLen, bool fixLen, bool crcOn, bool FreqHopOn, uint8_t HopPeriod, bool iqInverted, uint32_t timeout ) = 0; virtual void SetTxContinuous(bool enable) = 0; /*! * \brief Checks if the given RF frequency is supported by the hardware * * \param [IN] frequency RF frequency to be checked * \retval isSupported [true: supported, false: unsupported] */ virtual bool CheckRfFrequency( uint32_t frequency ) { return true; } /*! * \brief Computes the packet time on air for the given payload * * \Remark Can only be called once SetRxConfig or SetTxConfig have been called * * \param [IN] modem Radio modem to be used [0: FSK, 1: LoRa] * \param [IN] pktLen Packet payload length * * \retval airTime Computed airTime for the given packet payload length */ virtual double TimeOnAir( RadioModems_t modem, uint8_t pktLen ) = 0; /*! * \brief Sends the buffer of size. Prepares the packet to be sent and sets * the radio in transmission * * \param [IN]: buffer Buffer pointer * \param [IN]: size Buffer size */ virtual void Send( const uint8_t *buffer, uint8_t size ) = 0; /*! * \brief Sets the radio in sleep mode */ virtual void Sleep( void ) = 0; /*! * \brief Sets the radio in standby mode */ virtual void Standby( void ) = 0; /*! * \brief Sets the radio in reception mode for the given time * \param [IN] timeout Reception timeout [us] * [0: continuous, others timeout] */ virtual void Rx( uint32_t timeout ) = 0; /*! * \brief Start a Channel Activity Detection */ virtual void StartCad( void ) = 0; /*! * \brief Reads the current RSSI value * * \retval rssiValue Current RSSI value in [dBm] */ virtual int16_t Rssi( RadioModems_t modem ) = 0; /*! * \brief Writes the radio register at the specified address * * \param [IN]: addr Register address * \param [IN]: data New register value */ virtual void Write( uint8_t addr, uint8_t data ) = 0; /*! * \brief Reads the radio register at the specified address * * \param [IN]: addr Register address * \retval data Register value */ virtual uint8_t Read ( uint8_t addr ) = 0; /*! * \brief Writes multiple radio registers starting at address * * \param [IN] addr First Radio register address * \param [IN] buffer Buffer containing the new register's values * \param [IN] size Number of registers to be written */ virtual void WriteBuffer( uint8_t addr, const uint8_t *buffer, uint8_t size ) = 0; /*! * \brief Reads multiple radio registers starting at address * * \param [IN] addr First Radio register address * \param [OUT] buffer Buffer where to copy the registers data * \param [IN] size Number of registers to be read */ virtual void ReadBuffer( uint8_t addr, uint8_t *buffer, uint8_t size ) = 0; virtual void SignalMacEvent(void) {}; void GrabMutex(void) { mutex.lock(); } void ReleaseMutex(void) { mutex.unlock(); } const uint32_t WakeupTime; protected: RadioState_t State; RadioModems_t Modem; /*! * Access protection */ Mutex mutex; }; #endif // __SXRADIO_H__