Bleeding edge development version of the mDot library for mbed 5. This version of the library is not guaranteed to be stable or well tested and should not be used in production or deployment scenarios.
Dependents: mDot-IKS01A1 mDot-IKS01A1 mDot-Examples mDot-IKS01A1-Explora ... more
Fork of libmDot-dev-mbed2-deprecated by
The Dot library provides a LoRaWan certified stack for LoRa communication using MultiTech mDot and xDot devices. The stack is compatible with mbed 5.
Dot Library Version 3 Updates
Dot Library versions 3.x.x require a channel plan to be injected into the stack. Channel plans are included with the 3.x.x Dot Library releases. The following code snippet demonstrates how to create a channel plan and inject it into the stack.
#include "mDot.h" #include "channel_plans.h" int main() { ChannelPlan* plan = new lora::ChannelPlan_US915(); assert(plan); mDot* dot = mDot::getInstance(plan); assert(dot); // ... }
Dot devices must not be deployed with software using a different channel plan than the Dot's default plan! This functionality is for development and testing only!
Multicast Sessions
Multicast sessions and packet rx events in library. When in Class C mode Multicast downlinks can be received. Recieved packets should be filtered on address, counter value will be maintained in the session or can be set explicitly depending on Application support to share Multicast Address, Keys and Counters.
mDot.h
/** * Add a multicast session address and keys * Downlink counter is set to 0 * Up to 3 MULTICAST_SESSIONS can be set */ int32_t setMulticastSession(uint8_t index, uint32_t addr, const uint8_t* nsk, const uint8_t* dsk); /** * Set a multicast session counter * Up to 3 MULTICAST_SESSIONS can be set */ int32_t setMulticastDownlinkCounter(uint8_t index, uint32_t count);
mDotEvent.h
The address field was added to PacketRx event.
virtual void PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address);
The name of the repository can be used to determine which device the stack was compiled for and if it's a development or production-ready build:
- libmDot-mbed5 -> production-ready build for mDot
- libmDot-dev-mbed5 -> development build for mDot
- libxDot-mbed5 -> production-ready build for xDot
- libxDot-dev-mbed5 -> development build for xDot
A changelog for the Dot library can be found here.
The Dot library version and the version of mbed-os it was compiled against can both be found in the commit message for that revision of the Dot library. Building your application with the same version of mbed-os as what was used to build the Dot library is highly recommended!
The Dot-Examples repository demonstrates how to use the Dot library in a custom application.
The mDot and xDot platform pages have lots of platform specific information and document potential issues, gotchas, etc, and provide instructions for getting started with development. Please take a look at the platform page before starting development as they should answer many questions you will have.
plans/ChannelPlan_AU915.cpp
- Committer:
- Jenkins@KEILDM1.dc.multitech.prv
- Date:
- 2018-05-04
- Revision:
- 151:2242ecfd733a
- Parent:
- 139:b2e9d643eef9
- Child:
- 153:7c00843e4bba
File content as of revision 151:2242ecfd733a:
/********************************************************************** * COPYRIGHT 2016 MULTI-TECH SYSTEMS, INC. * * ALL RIGHTS RESERVED BY AND FOR THE EXCLUSIVE BENEFIT OF * MULTI-TECH SYSTEMS, INC. * * MULTI-TECH SYSTEMS, INC. - CONFIDENTIAL AND PROPRIETARY * INFORMATION AND/OR TRADE SECRET. * * NOTICE: ALL CODE, PROGRAM, INFORMATION, SCRIPT, INSTRUCTION, * DATA, AND COMMENT HEREIN IS AND SHALL REMAIN THE CONFIDENTIAL * INFORMATION AND PROPERTY OF MULTI-TECH SYSTEMS, INC. * USE AND DISCLOSURE THEREOF, EXCEPT AS STRICTLY AUTHORIZED IN A * WRITTEN AGREEMENT SIGNED BY MULTI-TECH SYSTEMS, INC. IS PROHIBITED. * ***********************************************************************/ #include "ChannelPlan_AU915.h" #include "limits.h" using namespace lora; const uint8_t ChannelPlan_AU915::AU915_TX_POWERS[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 }; const uint8_t ChannelPlan_AU915::AU915_RADIO_POWERS[] = { 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 19 }; const uint8_t ChannelPlan_AU915::AU915_MAX_PAYLOAD_SIZE[] = { 51, 51, 51, 115, 242, 242, 242, 0, 53, 129, 242, 242, 242, 242, 0, 0 }; const uint8_t ChannelPlan_AU915::AU915_MAX_PAYLOAD_SIZE_REPEATER[] = { 51, 51, 51, 115, 222, 222, 222, 0, 33, 109, 222, 222, 222, 222, 0, 0 }; ChannelPlan_AU915::ChannelPlan_AU915() : ChannelPlan(NULL, NULL) { } ChannelPlan_AU915::ChannelPlan_AU915(Settings* settings) : ChannelPlan(NULL, settings) { } ChannelPlan_AU915::ChannelPlan_AU915(SxRadio* radio, Settings* settings) : ChannelPlan(radio, settings) { } ChannelPlan_AU915::~ChannelPlan_AU915() { } void ChannelPlan_AU915::Init() { _plan = AU915; _planName = "AU915"; _datarates.clear(); _channels.clear(); _dutyBands.clear(); DutyBand band; band.Index = 0; band.DutyCycle = 0; Datarate dr; _maxTxPower = 30; _minTxPower = 0; _minFrequency = AU915_FREQ_MIN; _maxFrequency = AU915_FREQ_MAX; TX_POWERS = AU915_TX_POWERS; RADIO_POWERS = AU915_RADIO_POWERS; MAX_PAYLOAD_SIZE = AU915_MAX_PAYLOAD_SIZE; MAX_PAYLOAD_SIZE_REPEATER = AU915_MAX_PAYLOAD_SIZE_REPEATER; band.FrequencyMin = AU915_FREQ_MIN; band.FrequencyMax = AU915_FREQ_MAX; _freqUBase125k = AU915_125K_FREQ_BASE; _freqUStep125k = AU915_125K_FREQ_STEP; _freqUBase500k = AU915_500K_FREQ_BASE; _freqUStep500k = AU915_500K_FREQ_STEP; _freqDBase500k = AU915_500K_DBASE; _freqDStep500k = AU915_500K_DSTEP; GetSettings()->Session.Rx2Frequency = AU915_500K_DBASE; _minDatarate = AU915_MIN_DATARATE; _maxDatarate = AU915_MAX_DATARATE; _minRx2Datarate = DR_8; _maxRx2Datarate = DR_13; _minDatarateOffset = AU915_MIN_DATARATE_OFFSET; _maxDatarateOffset = AU915_MAX_DATARATE_OFFSET; _numChans125k = AU915_125K_NUM_CHANS; _numChans500k = AU915_500K_NUM_CHANS; logInfo("Initialize channels..."); SetNumberOfChannels(AU915_125K_NUM_CHANS + AU915_500K_NUM_CHANS, false); dr.SpreadingFactor = SF_12; logInfo("Initialize datarates..."); // Add DR0-5 while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Add DR6 dr.SpreadingFactor = SF_8; dr.Bandwidth = BW_500; AddDatarate(-1, dr); dr.Index++; // Skip DR7 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), dr.Index++; if (GetSettings()->Network.FrequencySubBand == 0) { band.PowerMax = 30; } else { band.PowerMax = 21; } band.TimeOffEnd = 0; AddDutyBand(-1, band); GetSettings()->Session.Rx2DatarateIndex = DR_8; // Add DR8-13 dr.SpreadingFactor = SF_12; while (dr.SpreadingFactor >= SF_7) { AddDatarate(-1, dr); dr.SpreadingFactor--; dr.Index++; } // Skip DR14-15 RFU dr.SpreadingFactor = SF_INVALID; AddDatarate(-1, dr), AddDatarate(-1, dr); GetSettings()->Session.TxDatarate = DR_0; GetSettings()->Session.TxPower = GetSettings()->Network.TxPower; SetFrequencySubBand(GetSettings()->Network.FrequencySubBand); } uint8_t ChannelPlan_AU915::HandleJoinAccept(const uint8_t* buffer, uint8_t size) { if (size > 17) { // TODO: Handle future channel mask settings } return LORA_OK; } void ChannelPlan_AU915::SetNumberOfChannels(uint8_t channels, bool resize) { uint8_t newsize = ((channels - 1) / CHAN_MASK_SIZE) + 1; if (resize) { _channels.resize(channels); } _channelMask.resize(newsize, 0x0); _numChans = channels; } uint8_t ChannelPlan_AU915::GetMinDatarate() { if (GetSettings()->Network.Mode == lora::PEER_TO_PEER) return 8; else return _minDatarate; } uint8_t ChannelPlan_AU915::GetMaxDatarate() { if (GetSettings()->Network.Mode == lora::PEER_TO_PEER) return 13; else return _maxDatarate; } bool ChannelPlan_AU915::IsChannelEnabled(uint8_t channel) { uint8_t index = channel / CHAN_MASK_SIZE; uint8_t shift = channel % CHAN_MASK_SIZE; assert(index < _channelMask.size() * CHAN_MASK_SIZE); // cannot shift over 32 bits assert(shift < 32); // logDebug("index: %d shift %d cm: %04x bit: %04x enabled: %d", index, shift, _channelMask[index], (1 << shift), (_channelMask[index] & (1 << shift)) == (1 << shift)); return (_channelMask[index] & (1 << shift)) == (1 << shift); } uint8_t ChannelPlan_AU915::SetRx1Offset(uint8_t offset) { GetSettings()->Session.Rx1DatarateOffset = offset; return LORA_OK; } uint8_t ChannelPlan_AU915::SetRx2Frequency(uint32_t freq) { GetSettings()->Session.Rx2Frequency = freq; return LORA_OK; } uint8_t ChannelPlan_AU915::SetRx2DatarateIndex(uint8_t index) { GetSettings()->Session.Rx2DatarateIndex = index; return LORA_OK; } uint8_t ChannelPlan_AU915::SetTxConfig() { logInfo("Configure radio for TX"); uint8_t band = GetDutyBand(GetChannel(_txChannel).Frequency); Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); int8_t max_pwr = _dutyBands[band].PowerMax; int8_t pwr = 0; pwr = std::min < int8_t > (GetSettings()->Session.TxPower, max_pwr); if (pwr + GetSettings()->Network.AntennaGain >= max_pwr + 6 && GetSettings()->Network.AntennaGain > 6) { pwr -= (GetSettings()->Network.AntennaGain - 6); } for (int i = 20; i >= 0; i--) { if (RADIO_POWERS[i] <= pwr) { pwr = i; break; } if (i == 0) { pwr = i; } } logDebug("Session pwr: %d ant: %d max: %d", GetSettings()->Session.TxPower, GetSettings()->Network.AntennaGain, max_pwr); logDebug("Radio Power index: %d output: %d total: %d", pwr, RADIO_POWERS[pwr], RADIO_POWERS[pwr] + GetSettings()->Network.AntennaGain); uint32_t bw = txDr.Bandwidth; uint32_t sf = txDr.SpreadingFactor; uint8_t cr = txDr.Coderate; uint8_t pl = txDr.PreambleLength; uint16_t fdev = 0; bool crc = txDr.Crc; bool iq = txDr.TxIQ; if (GetSettings()->Network.DisableCRC == true) crc = false; SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; fdev = 25e3; bw = 0; } GetRadio()->SetTxConfig(modem, pwr, fdev, bw, sf, cr, pl, false, crc, false, 0, iq, 3e3); logDebug("TX PWR: %u DR: %u SF: %u BW: %u CR: %u PL: %u CRC: %d IQ: %d", pwr, txDr.Index, sf, bw, cr, pl, crc, iq); return LORA_OK; } uint8_t ChannelPlan_AU915::SetRxConfig(uint8_t window, bool continuous) { RxWindow rxw = GetRxWindow(window); GetRadio()->SetChannel(rxw.Frequency); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint32_t bw = rxDr.Bandwidth; uint32_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); uint32_t afc = 0; bool crc = false; // downlink does not use CRC according to LORAWAN if (GetSettings()->Network.DisableCRC == true) crc = false; Datarate txDr = GetDatarate(GetSettings()->Session.TxDatarate); bool iq = txDr.RxIQ; if (P2PEnabled()) { iq = txDr.TxIQ; } SxRadio::RadioModems_t modem = SxRadio::MODEM_LORA; if (sf == SF_FSK) { modem = SxRadio::MODEM_FSK; sf = 50e3; cr = 0; bw = 50e3; afc = 83333; iq = false; crc = true; // FSK must use CRC } // Disable printf's to actually receive packets, printing to debug may mess up the timing // logTrace("Configure radio for RX%d on freq: %lu", window, rxw.Frequency); // logTrace("RX SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", sf, bw, cr, pl, sto, crc, iq); GetRadio()->SetRxConfig(modem, bw, sf, cr, afc, pl, sto, false, 0, crc, false, 0, iq, continuous); return LORA_OK; } uint8_t ChannelPlan_AU915::AddChannel(int8_t index, Channel channel) { logTrace("Add Channel %d : %lu : %02x %d", index, channel.Frequency, channel.DrRange.Value, _channels.size()); assert(index < (int) _channels.size()); if (index >= 0) { _channels[index] = channel; } else { _channels.push_back(channel); } return LORA_OK; } Channel ChannelPlan_AU915::GetChannel(int8_t index) { Channel chan; memset(&chan, 0, sizeof(Channel)); if (_channels.size() > 0) { chan = _channels[index]; } else { if (index < 64) { chan.Index = index; chan.DrRange.Fields.Min = _minDatarate; chan.DrRange.Fields.Max = _maxDatarate - 1; chan.Frequency = _freqUBase125k + (_freqUStep125k * index); } else if (index < 72) { chan.Index = index; chan.DrRange.Fields.Min = _maxDatarate; chan.DrRange.Fields.Max = _maxDatarate; chan.Frequency = _freqUBase500k + (_freqUStep500k * (index - 64)); } } return chan; } uint8_t ChannelPlan_AU915::SetFrequencySubBand(uint8_t sub_band) { _txFrequencySubBand = sub_band; if (sub_band > 0) { SetChannelMask(0, 0x0000); SetChannelMask(1, 0x0000); SetChannelMask(2, 0x0000); SetChannelMask(3, 0x0000); SetChannelMask(4, 0x0000); SetChannelMask((sub_band - 1) / 2, (sub_band % 2) ? 0x00FF : 0xFF00); SetChannelMask(4, 1 << (sub_band - 1)); } else { SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, 0x00FF); } return LORA_OK; } void ChannelPlan_AU915::LogRxWindow(uint8_t wnd) { RxWindow rxw = GetRxWindow(wnd); Datarate rxDr = GetDatarate(rxw.DatarateIndex); uint8_t bw = rxDr.Bandwidth; uint8_t sf = rxDr.SpreadingFactor; uint8_t cr = rxDr.Coderate; uint8_t pl = rxDr.PreambleLength; uint16_t sto = rxDr.SymbolTimeout(); bool crc = false; // downlink does not use CRC according to LORAWAN bool iq = GetTxDatarate().RxIQ; logTrace("RX%d on freq: %lu", wnd, rxw.Frequency); logTrace("RX DR: %u SF: %u BW: %u CR: %u PL: %u STO: %u CRC: %d IQ: %d", rxDr.Index, sf, bw, cr, pl, sto, crc, iq); } RxWindow ChannelPlan_AU915::GetRxWindow(uint8_t window) { RxWindow rxw; int index = 0; if (P2PEnabled()) { rxw.Frequency = GetSettings()->Network.TxFrequency; index = GetSettings()->Session.TxDatarate; } else { if (window == 1) { if (_txChannel < _numChans125k) { if (GetSettings()->Network.Mode == lora::PRIVATE_MTS) rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; else rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } else rxw.Frequency = _freqDBase500k + (_txChannel - _numChans125k) * _freqDStep500k; if (GetSettings()->Session.TxDatarate <= DR_6) { index = GetSettings()->Session.TxDatarate + 8 - GetSettings()->Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; if (index > DR_13) index = DR_13; } else if (GetSettings()->Session.TxDatarate >= DR_8) { index = GetSettings()->Session.TxDatarate - GetSettings()->Session.Rx1DatarateOffset; if (index < DR_8) index = DR_8; } } else { if (GetSettings()->Network.Mode == lora::PRIVATE_MTS) { if (_txChannel < _numChans125k) { rxw.Frequency = _freqDBase500k + (_txChannel / 8) * _freqDStep500k; } else { rxw.Frequency = _freqDBase500k + (_txChannel % 8) * _freqDStep500k; } } else { rxw.Frequency = GetSettings()->Session.Rx2Frequency; } index = GetSettings()->Session.Rx2DatarateIndex; } } rxw.DatarateIndex = index; return rxw; } uint8_t ChannelPlan_AU915::HandleRxParamSetup(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x07; int8_t datarate = 0; int8_t drOffset = 0; uint32_t freq = 0; drOffset = payload[index++]; datarate = drOffset & 0x0F; drOffset = (drOffset >> 4) & 0x07; freq = payload[index++]; freq |= payload[index++] << 8; freq |= payload[index++] << 16; freq *= 100; if (!CheckRfFrequency(freq)) { logInfo("Freq KO"); status &= 0xFE; // Channel frequency KO } if (datarate < _minRx2Datarate || datarate > _maxRx2Datarate) { logInfo("DR KO"); status &= 0xFD; // Datarate KO } if (drOffset < 0 || drOffset > _maxDatarateOffset) { logInfo("DR Offset KO"); status &= 0xFB; // Rx1DrOffset range KO } if ((status & 0x07) == 0x07) { logInfo("RxParamSetup accepted Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); SetRx2DatarateIndex(datarate); SetRx2Frequency(freq); SetRx1Offset(drOffset); } else { logInfo("RxParamSetup rejected Rx2DR: %d Rx2Freq: %d Rx1Offset: %d", datarate, freq, drOffset); } return LORA_OK; } uint8_t ChannelPlan_AU915::HandleNewChannel(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { // Not Supported in AU915 status = 0; return LORA_OK; } uint8_t ChannelPlan_AU915::HandleDownlinkChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { // Not Supported in AU915 status = 0; return LORA_OK; } uint8_t ChannelPlan_AU915::HandlePingSlotChannelReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { lora::CopyFreqtoInt(payload + index, _beaconRxChannel.Frequency); index += 3; if (_beaconRxChannel.Frequency != 0) { _beaconRxChannel.DrRange.Value = payload[index]; } else { // TODO: set to default beacon rx channel } status = 0x03; return LORA_OK; } uint8_t ChannelPlan_AU915::HandleBeaconFrequencyReq(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { status = 0x03; Channel chParam; // Skip channel index index++; lora::CopyFreqtoInt(payload + index, chParam.Frequency); index += 3; chParam.DrRange.Value = payload[index++]; if (!GetRadio()->CheckRfFrequency(chParam.Frequency)) { status &= 0xFE; // Channel frequency KO } if (chParam.DrRange.Fields.Min < chParam.DrRange.Fields.Max) { status &= 0xFD; // Datarate range KO } else if (chParam.DrRange.Fields.Min < _minDatarate || chParam.DrRange.Fields.Min > _maxDatarate) { status &= 0xFD; // Datarate range KO } else if (chParam.DrRange.Fields.Max < _minDatarate || chParam.DrRange.Fields.Max > _maxDatarate) { status &= 0xFD; // Datarate range KO } if ((status & 0x03) == 0x03) { _beaconChannel = chParam; } if (_beaconChannel.Frequency == 0) { // TODO: Set to default } status = 0x01; return LORA_OK; } uint8_t ChannelPlan_AU915::HandleAdrCommand(const uint8_t* payload, uint8_t index, uint8_t size, uint8_t& status) { uint8_t power = 0; uint8_t datarate = 0; uint16_t mask = 0; uint8_t ctrl = 0; uint8_t nbRep = 0; status = 0x07; datarate = payload[index++]; power = datarate & 0x0F; datarate = (datarate >> 4) & 0x0F; mask = payload[index++]; mask |= payload[index++] << 8; nbRep = payload[index++]; ctrl = (nbRep >> 4) & 0x07; nbRep &= 0x0F; if (nbRep == 0) { nbRep = 1; } if (datarate > _maxDatarate) { status &= 0xFD; // Datarate KO } // // Remark MaxTxPower = 0 and MinTxPower = 10 // if (power > 10) { status &= 0xFB; // TxPower KO } switch (ctrl) { case 0: case 1: case 2: case 3: case 4: SetChannelMask(ctrl, mask); break; case 6: // enable all 125 kHz channels SetChannelMask(0, 0xFFFF); SetChannelMask(1, 0xFFFF); SetChannelMask(2, 0xFFFF); SetChannelMask(3, 0xFFFF); SetChannelMask(4, mask); break; case 7: // disable all 125 kHz channels SetChannelMask(0, 0x0); SetChannelMask(1, 0x0); SetChannelMask(2, 0x0); SetChannelMask(3, 0x0); SetChannelMask(4, mask); break; default: logWarning("rejecting RFU or unknown control value %d", ctrl); status &= 0xFE; // ChannelMask KO return LORA_ERROR; } if (GetSettings()->Network.ADREnabled) { GetSettings()->Session.TxDatarate = datarate; GetSettings()->Session.TxPower = TX_POWERS[power]; GetSettings()->Session.Redundancy = nbRep; } else { logDebug("ADR is disabled, DR and Power not changed."); status &= 0xFB; // TxPower KO status &= 0xFD; // Datarate KO } logDebug("ADR DR: %u PWR: %u Ctrl: %02x Mask: %04x NbRep: %u Stat: %02x", datarate, power, ctrl, mask, nbRep, status); return LORA_OK; } uint8_t ChannelPlan_AU915::ValidateAdrConfiguration() { uint8_t status = 0x07; uint8_t chans_enabled = 0; uint8_t datarate = GetSettings()->Session.TxDatarate; uint8_t power = GetSettings()->Session.TxPower; if (!GetSettings()->Network.ADREnabled) { logDebug("ADR disabled - no applied changes to validate"); return status; } if (datarate > _maxDatarate) { logWarning("ADR Datarate KO - outside allowed range"); status &= 0xFD; // Datarate KO } if (power < _minTxPower || power > _maxTxPower) { logWarning("ADR TX Power KO - outside allowed range"); status &= 0xFB; // TxPower KO } // at least 2 125kHz channels must be enabled chans_enabled += CountBits(_channelMask[0]); chans_enabled += CountBits(_channelMask[1]); chans_enabled += CountBits(_channelMask[2]); chans_enabled += CountBits(_channelMask[3]); // Semtech reference (LoRaMac-node) enforces at least 2 channels if (chans_enabled < 2) { logWarning("ADR Channel Mask KO - at least 2 125kHz channels must be enabled"); status &= 0xFE; // ChannelMask KO } // if TXDR == 4 (SF8@500kHz) at least 1 500kHz channel must be enabled if (datarate == DR_4 && (CountBits(_channelMask[4] & 0xFF) == 0)) { logWarning("ADR Datarate KO - DR4 requires at least 1 500kHz channel enabled"); status &= 0xFD; // Datarate KO } return status; } uint32_t ChannelPlan_AU915::GetTimeOffAir() { if (GetSettings()->Test.DisableDutyCycle == lora::ON) return 0; uint32_t min = 0; uint32_t now = _dutyCycleTimer.read_ms(); if (GetSettings()->Session.AggregatedTimeOffEnd > 0 && GetSettings()->Session.AggregatedTimeOffEnd > now) { min = std::max < uint32_t > (min, GetSettings()->Session.AggregatedTimeOffEnd - now); } now = time(NULL); uint32_t join_time = 0; if (GetSettings()->Session.JoinFirstAttempt != 0 && now < GetSettings()->Session.JoinTimeOffEnd) { join_time = (GetSettings()->Session.JoinTimeOffEnd - now) * 1000; } min = std::max < uint32_t > (join_time, min); return min; } std::vector<uint32_t> lora::ChannelPlan_AU915::GetChannels() { std::vector < uint32_t > chans; if (GetSettings()->Network.FrequencySubBand > 0) { uint8_t chans_per_group = 8; size_t start = (GetSettings()->Network.FrequencySubBand - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetChannel(_numChans125k + (GetSettings()->Network.FrequencySubBand - 1)).Frequency); chans.push_back(GetRxWindow(2).Frequency); } else { for (int8_t i = 0; i < _numChans; i++) { chans.push_back(GetChannel(i).Frequency); } chans.push_back(GetRxWindow(2).Frequency); } return chans; } std::vector<uint8_t> lora::ChannelPlan_AU915::GetChannelRanges() { std::vector < uint8_t > ranges; if (GetSettings()->Network.FrequencySubBand > 0) { uint8_t chans_per_group = 8; size_t start = (GetSettings()->Network.FrequencySubBand - 1) * chans_per_group; for (int8_t i = start; i < int8_t(start + chans_per_group); i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetChannel(_numChans125k + (GetSettings()->Network.FrequencySubBand - 1)).DrRange.Value); ranges.push_back(GetRxWindow(2).DatarateIndex); } else { for (int8_t i = 0; i < _numChans; i++) { ranges.push_back(GetChannel(i).DrRange.Value); } ranges.push_back(GetRxWindow(2).DatarateIndex); } ranges.push_back(GetRxWindow(2).DatarateIndex); return ranges; } void lora::ChannelPlan_AU915::EnableDefaultChannels() { SetFrequencySubBand(GetFrequencySubBand()); } uint8_t ChannelPlan_AU915::GetNextChannel() { if (GetSettings()->Session.AggregatedTimeOffEnd != 0) { return LORA_AGGREGATED_DUTY_CYCLE; } if (P2PEnabled() || GetSettings()->Network.TxFrequency != 0) { logDebug("Using frequency %d", GetSettings()->Network.TxFrequency); if (GetSettings()->Test.DisableDutyCycle != lora::ON) { int8_t band = GetDutyBand(GetSettings()->Network.TxFrequency); logDebug("band: %d freq: %d", band, GetSettings()->Network.TxFrequency); if (band != -1 && _dutyBands[band].TimeOffEnd != 0) { return LORA_NO_CHANS_ENABLED; } } GetRadio()->SetChannel(GetSettings()->Network.TxFrequency); return LORA_OK; } uint8_t start = 0; uint8_t maxChannels = _numChans125k; uint8_t nbEnabledChannels = 0; uint8_t *enabledChannels = new uint8_t[maxChannels]; if (GetTxDatarate().Bandwidth == BW_500) { maxChannels = _numChans500k; start = _numChans125k; } // Search how many channels are enabled DatarateRange range; uint8_t dr_index = GetSettings()->Session.TxDatarate; uint32_t now = _dutyCycleTimer.read_ms(); for (size_t i = 0; i < _dutyBands.size(); i++) { if (_dutyBands[i].TimeOffEnd < now || GetSettings()->Test.DisableDutyCycle == lora::ON) { _dutyBands[i].TimeOffEnd = 0; } } for (uint8_t i = start; i < start + maxChannels; i++) { range = GetChannel(i).DrRange; // logDebug("chan: %d freq: %d range:%02x", i, GetChannel(i).Frequency, range.Value); if (IsChannelEnabled(i) && (dr_index >= range.Fields.Min && dr_index <= range.Fields.Max)) { int8_t band = GetDutyBand(GetChannel(i).Frequency); // logDebug("band: %d freq: %d", band, _channels[i].Frequency); if (band != -1 && _dutyBands[band].TimeOffEnd == 0) { enabledChannels[nbEnabledChannels++] = i; } } } if (GetTxDatarate().Bandwidth == BW_500) { _dutyBands[0].PowerMax = 26; } else { if (nbEnabledChannels < 50) _dutyBands[0].PowerMax = 21; else _dutyBands[0].PowerMax = 30; } logTrace("Number of available channels: %d", nbEnabledChannels); uint32_t freq = 0; uint8_t sf = GetTxDatarate().SpreadingFactor; uint8_t bw = GetTxDatarate().Bandwidth; int16_t thres = DEFAULT_FREE_CHAN_RSSI_THRESHOLD; if (nbEnabledChannels == 0) { delete [] enabledChannels; return LORA_NO_CHANS_ENABLED; } if (GetSettings()->Network.CADEnabled) { // Search for free channel with ms timeout int16_t timeout = 10000; Timer tmr; tmr.start(); for (uint8_t j = rand_r(0, nbEnabledChannels - 1); tmr.read_ms() < timeout; j++) { freq = GetChannel(enabledChannels[j]).Frequency; if (GetRadio()->IsChannelFree(SxRadio::MODEM_LORA, freq, sf, thres, bw)) { _txChannel = enabledChannels[j]; break; } } } else { uint8_t j = rand_r(0, nbEnabledChannels - 1); _txChannel = enabledChannels[j]; freq = GetChannel(_txChannel).Frequency; } assert(freq != 0); logDebug("Using channel %d : %d", _txChannel, freq); GetRadio()->SetChannel(freq); delete [] enabledChannels; return LORA_OK; } uint8_t lora::ChannelPlan_AU915::GetJoinDatarate() { uint8_t dr = GetSettings()->Session.TxDatarate; if (GetSettings()->Test.DisableRandomJoinDatarate == lora::OFF) { static bool altDatarate = false; if (GetSettings()->Network.FrequencySubBand == 0) { static uint16_t used_bands_125k = 0; static uint16_t used_bands_500k = 0; uint8_t frequency_sub_band = 0; if (altDatarate) { // 500k channel if (CountBits(used_bands_500k) == 8) { used_bands_500k = 0; } while ((frequency_sub_band = rand_r(1, 8)) && (used_bands_500k & (1 << (frequency_sub_band - 1))) != 0) ; used_bands_500k |= (1 << (frequency_sub_band - 1)); } else { // 125k channel if (CountBits(used_bands_125k) == 8) { used_bands_125k = 0; } while ((frequency_sub_band = rand_r(1, 8)) && (used_bands_125k & (1 << (frequency_sub_band - 1))) != 0) ; used_bands_125k |= (1 << (frequency_sub_band - 1)); } logWarning("JoinDatarate setting frequency sub band to %d 125k: %04x 500k: %04x", frequency_sub_band, used_bands_125k, used_bands_500k); SetFrequencySubBand(frequency_sub_band); } if (altDatarate && CountBits(_channelMask[4] > 0)) { dr = lora::DR_4; } else { dr = lora::DR_0; } altDatarate = !altDatarate; } return dr; } uint8_t lora::ChannelPlan_AU915::CalculateJoinBackoff(uint8_t size) { time_t now = time(NULL); uint32_t time_on_max = 0; static uint32_t time_off_max = 15; uint32_t rand_time_off = 0; static uint16_t join_cnt = 0; // TODO: calc time-off-max based on RTC time from JoinFirstAttempt, time-off-max is lost over sleep if ((time_t)GetSettings()->Session.JoinTimeOffEnd > now) { return LORA_JOIN_BACKOFF; } uint32_t secs_since_first_attempt = (now - GetSettings()->Session.JoinFirstAttempt); uint16_t hours_since_first_attempt = secs_since_first_attempt / (60 * 60); join_cnt = (join_cnt+1) % 16; if (GetSettings()->Session.JoinFirstAttempt == 0) { /* 1 % duty-cycle for first hour * 0.1 % next 10 hours * 0.01 % upto 24 hours */ GetSettings()->Session.JoinFirstAttempt = now; GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_r(GetSettings()->Network.JoinDelay + 2, GetSettings()->Network.JoinDelay + 3); } else if (join_cnt == 0) { if (hours_since_first_attempt < 1) { time_on_max = 36000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 60 * 60; } } else if (hours_since_first_attempt < 11) { if (GetSettings()->Session.JoinTimeOnAir < 36000) { GetSettings()->Session.JoinTimeOnAir = 36000; } time_on_max = 72000; rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); // time off max 1 hour time_off_max = std::min < uint32_t > (time_off_max * 2, 60 * 60); if (GetSettings()->Session.JoinTimeOnAir < time_on_max) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + 11 * 60 * 60; } } else { if (GetSettings()->Session.JoinTimeOnAir < 72000) { GetSettings()->Session.JoinTimeOnAir = 72000; } uint32_t join_time = 2500; // 16 join attempts is ~2754 ms, check if this is the third of the 24 hour period time_on_max = 80700; time_off_max = 1 * 60 * 60; // 1 hour rand_time_off = rand_r(time_off_max - 1, time_off_max + 1); if (GetSettings()->Session.JoinTimeOnAir < time_on_max - join_time) { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_time_off; } else { logWarning("Max time-on-air limit met for current join backoff period"); // Reset the join time on air and set end of restriction to the next 24 hour period GetSettings()->Session.JoinTimeOnAir = 72000; uint16_t days = (now - GetSettings()->Session.JoinFirstAttempt) / (24 * 60 * 60) + 1; logWarning("days : %d", days); GetSettings()->Session.JoinTimeOffEnd = GetSettings()->Session.JoinFirstAttempt + ((days * 24) + 11) * 60 * 60; } } logWarning("JoinBackoff: %lu seconds Time On Air: %lu / %lu", GetSettings()->Session.JoinTimeOffEnd - now, GetSettings()->Session.JoinTimeOnAir, time_on_max); } else { GetSettings()->Session.JoinTimeOnAir += GetTimeOnAir(size); GetSettings()->Session.JoinTimeOffEnd = now + rand_r(GetSettings()->Network.JoinDelay + 2, GetSettings()->Network.JoinDelay + 3); } return LORA_OK; }