Example programs for MultiTech Dot devices demonstrating how to use the Dot devices and the Dot libraries for LoRa communication.

Dependencies:   ISL29011

Dependents:   Dot-Examples-delujoc

This project has moved to github

Please see GitHub Dot-Examples

Dot Library Not Included!

Because these example programs can be used for both mDot and xDot devices, the LoRa stack is not included. The libmDot library should be imported if building for mDot devices. The libxDot library should be imported if building for xDot devices.

Dot Library Limitations

Commit messages in Dot Library repositories specify the version of the library and the version of mbed-os it was compiled against. We recommend building your application with the version of mbed-os specified in the commit message of the version of the Dot library you're using. This will ensure that you don't run into any runtime issues caused by differences in the mbed-os versions.

Example Programs Description

This application contains multiple example programs. Each example demonstrates a different way to configure and use a Dot. A short summary of each example is provided below. Common code used by multiple examples is in the dot_utils.cpp file.

All examples print logging, including RX data, on the USB debug port at 115200 baud. Each example defaults the Dot's configuration and saves the new configuration to NVM.

OTA Example

This example demonstrates configuring the Dot for OTA join mode and entering sleep or deepsleep mode between transactions with the gateway. If deepsleep mode is used, the session is saved and restored so that a rejoin is not necessary after waking up even though RAM contents have been lost. ACKs are disabled, but network link checks are configured - if enough link checks are missed, the Dot will no longer be considered joined to the network and will attempt to rejoin before transmitting more data.

AUTO_OTA Example

This example demonstrates configuring the Dot for AUTO_OTA join mode and entering sleep or deepsleep mode between transactions with the gateway. AUTO_OTA join mode automatically saves and restores the session when deepsleep mode is used, so the manual saving and restoring of the session is not necessary. ACKs are disabled, but network link checks are configured - if enough link checks are missed, the Dot will no longer be considered joined to the network and will attempt to rejoin before transmitting more data.

Manual Example

This example demonstrates configuring the Dot for MANUAL join mode and entering sleep or deepsleep mode between transactions with the gateway. The Dot must be provisioned on the gateway before its packets will be accepted! Follow these steps to provision the Dot on a Conduit gateway:

  • ssh into the conduit
  • use the lorq-query application to provision the Dot on the gateway
    • lora-query -a 01020304 A 0102030401020304 <your Dot's device ID> 01020304010203040102030401020304 01020304010203040102030401020304
    • if any of the credentials change on the Dot side, they must be updated on the gateway side as well

To provision a Dot on a third-party gateway, see the gateway or network provider documentation.

Class B Example

This example demonstrates how to configure the dot for an OTA join, how to acquire a lock on a GPS synchronized beacon, and then to subsequently enter class B mode of operation. After a successful join, the device will request to the dot-library to switch to class B. When this happens, the library will send an uplink to the network server (hence we must be joined first before entering this mode) requesting the GPS time to calculate when the next beacon is expected. Once this time elapses, the dot will open an rx window to demodulate the broadcasted beacon and fire an mDotEvent::BeaconRx event upon successful reception. After the beacon is received, the example sends an uplink which will have the class B bit in the packet's frame control set to indicate to the network server that downlinks may now be scheduled on ping slots. The lora-query application can be used to configure a Conduit gateway to communicate with a Dot in class B mode. For information on how to inform a third-party gateway that a Dot is operating in class B mode, see the gateway or network provider documentation.

Class C Example

This example demonstrates configuring the Dot for OTA join mode and communicating with the gateway using class C mode. In class C mode the gateway can send a packet to the Dot at any time, so it must be listening whenever it is not transmitting. This means that the Dot cannot enter sleep or deepsleep mode. The gateway will not immediately send packets to the Dot (outside the receive windows following a transmission from the Dot) until it is informed that the Dot is operating in class C mode. The lora-query application can be used to configure a Conduit gateway to communicate with a Dot in class C mode. For information on how to inform a third-party gateway that a Dot is operating in class C mode, see the gateway or network provider documentation.

FOTA Example

Full FOTA support is available on mDot and on xDot with external flash. See this article for details on adding external flash for xDot FOTA.

Without external flash xDot can use the FOTA example to dynamically join a multicast session only. After joining the multicast session the received Fragmentation packets could be handed to a host MCU for processing and at completion the firmware can be loaded into the xDot using the bootloader and y-modem. See xDot Developer Guide.

This example demonstrates how to incorporate over-the-air updates to an application. The example uses a Class C application. Class A or B functionality could also be used. The device will automatically enter into Class C operation for the FOTA operation, Class B would be disabled during the FOTA transfer.

  • Add the following code to allow Fota to use the Dot instance

examples/src/fota_example.cpp

    // Initialize FOTA singleton
    Fota::getInstance(dot);
  • Add fragmentation and multicast handling the the PacketRx event

examples/inc/RadioEvent.h

    virtual void PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, uint32_t fcnt, bool dupRx) {
        mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, fcnt, dupRx);

#if ACTIVE_EXAMPLE == FOTA_EXAMPLE
        if(port == 200 || port == 201 || port == 202) {
            Fota::getInstance()->processCmd(payload, port, size);
        }
#endif
    }

A definition is needed to enable FOTA.

mbed_app.json

{
    "macros": [
        "FOTA=1"
    ]
}


Peer to Peer Example

This example demonstrates configuring Dots for peer to peer communication without a gateway. It should be compiled and run on two Dots. Peer to peer communication uses LoRa modulation but uses a single higher throughput (usually 500kHz or 250kHz) datarate. It is similar to class C operation - when a Dot isn't transmitting, it's listening for packets from the other Dot. Both Dots must be configured exactly the same for peer to peer communication to be successful.


Choosing An Example Program and Channel Plan

Only the active example is compiled. The active example can be updated by changing the ACTIVE_EXAMPLE definition in the examples/example_config.h file.

By default the OTA_EXAMPLE will be compiled and the US915 channel plan will be used.

example_config.h

#ifndef __EXAMPLE__CONFIG_H__
#define __EXAMPLE__CONFIG_H__

#define OTA_EXAMPLE              1  // see ota_example.cpp
#define AUTO_OTA_EXAMPLE         2  // see auto_ota_example.cpp
#define MANUAL_EXAMPLE           3  // see manual_example.cpp
#define PEER_TO_PEER_EXAMPLE     4  // see peer_to_peer_example.cpp
#define CLASS_C_EXAMPLE          5  // see class_c_example.cpp

// the active example is the one that will be compiled
#if !defined(ACTIVE_EXAMPLE)
#define ACTIVE_EXAMPLE  OTA_EXAMPLE
#endif

// the active channel plan is the one that will be compiled
// options are :
//      CP_US915
//      CP_AU915
//      CP_EU868
//      CP_KR920
//      CP_AS923
//      CP_AS923_JAPAN
#if !defined(CHANNEL_PLAN)
#define CHANNEL_PLAN CP_US915
#endif

#endif


Compile the AUTO_OTA_EXAMPLE and use the EU868 channel plan instead.

example_config.h

#ifndef __EXAMPLE__CONFIG_H__
#define __EXAMPLE__CONFIG_H__

#define OTA_EXAMPLE              1  // see ota_example.cpp
#define AUTO_OTA_EXAMPLE         2  // see auto_ota_example.cpp
#define MANUAL_EXAMPLE           3  // see manual_example.cpp
#define PEER_TO_PEER_EXAMPLE     4  // see peer_to_peer_example.cpp
#define CLASS_C_EXAMPLE          5  // see class_c_example.cpp

// the active example is the one that will be compiled
#if !defined(ACTIVE_EXAMPLE)
#define ACTIVE_EXAMPLE  AUTO_OTA_EXAMPLE
#endif

// the active channel plan is the one that will be compiled
// options are :
//      CP_US915
//      CP_AU915
//      CP_EU868
//      CP_KR920
//      CP_AS923
//      CP_AS923_JAPAN
#if !defined(CHANNEL_PLAN)
#define CHANNEL_PLAN CP_EU868
#endif

#endif



Dot Libraries

Stable and development libraries are available for both mDot and xDot platforms. The library chosen must match the target platform. Compiling for the mDot platform with the xDot library or vice versa will not succeed.

mDot Library

Development library for mDot.

libmDot-dev

Stable library for mDot.

libmDot-stable


For mbed-os 5 use:

Import librarylibmDot-mbed5

Stable version of the mDot library for mbed 5. This version of the library is suitable for deployment scenarios. See lastest commit message for version of mbed-os library that has been tested against.

xDot Library

Development library for xDot.

libxDot-dev

Stable library for xDot.

libxDot-stable


For mbed-os 5 use:

Import librarylibxDot-mbed5

Stable version of the xDot library for mbed 5. This version of the library is suitable for deployment scenarios.

Committer:
Jason Reiss
Date:
Mon May 18 13:12:47 2020 -0500
Revision:
41:67feacfab49c
Parent:
40:3cb0ed329c6e
Child:
42:20f6b29a9903
Add ServerTime event handler to RadioEvent

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Mike Fiore 14:19fae4509473 1 #ifndef __RADIO_EVENT_H__
Mike Fiore 14:19fae4509473 2 #define __RADIO_EVENT_H__
Mike Fiore 14:19fae4509473 3
Mike Fiore 14:19fae4509473 4 #include "dot_util.h"
Mike Fiore 14:19fae4509473 5 #include "mDotEvent.h"
Jason Reiss 34:f6486829a451 6 #include "Fota.h"
Mike Fiore 14:19fae4509473 7
Mike Fiore 14:19fae4509473 8 class RadioEvent : public mDotEvent
Mike Fiore 14:19fae4509473 9 {
Jason Reiss 34:f6486829a451 10
Mike Fiore 14:19fae4509473 11 public:
Mike Fiore 14:19fae4509473 12 RadioEvent() {}
Jason Reiss 34:f6486829a451 13
Mike Fiore 14:19fae4509473 14 virtual ~RadioEvent() {}
Jason Reiss 34:f6486829a451 15
Jason Reiss 40:3cb0ed329c6e 16 virtual void PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int16_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, bool dupRx) {
Jason Reiss 34:f6486829a451 17 mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, dupRx);
Jason Reiss 34:f6486829a451 18
Jason Reiss 34:f6486829a451 19 #if ACTIVE_EXAMPLE == FOTA_EXAMPLE
Jason Reiss 34:f6486829a451 20 if(port == 200 || port == 201 || port == 202) {
Jason Reiss 34:f6486829a451 21 Fota::getInstance()->processCmd(payload, port, size);
Jason Reiss 34:f6486829a451 22 }
Jason Reiss 34:f6486829a451 23 #endif
Jason Reiss 34:f6486829a451 24 }
Jason Reiss 34:f6486829a451 25
Mike Fiore 14:19fae4509473 26 /*!
Mike Fiore 14:19fae4509473 27 * MAC layer event callback prototype.
Mike Fiore 14:19fae4509473 28 *
Mike Fiore 14:19fae4509473 29 * \param [IN] flags Bit field indicating the MAC events occurred
Mike Fiore 14:19fae4509473 30 * \param [IN] info Details about MAC events occurred
Mike Fiore 14:19fae4509473 31 */
Mike Fiore 14:19fae4509473 32 virtual void MacEvent(LoRaMacEventFlags* flags, LoRaMacEventInfo* info) {
Jason Reiss 34:f6486829a451 33
Mike Fiore 14:19fae4509473 34 if (mts::MTSLog::getLogLevel() == mts::MTSLog::TRACE_LEVEL) {
Mike Fiore 14:19fae4509473 35 std::string msg = "OK";
Mike Fiore 14:19fae4509473 36 switch (info->Status) {
Mike Fiore 14:19fae4509473 37 case LORAMAC_EVENT_INFO_STATUS_ERROR:
Mike Fiore 14:19fae4509473 38 msg = "ERROR";
Mike Fiore 14:19fae4509473 39 break;
Mike Fiore 14:19fae4509473 40 case LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT:
Mike Fiore 14:19fae4509473 41 msg = "TX_TIMEOUT";
Mike Fiore 14:19fae4509473 42 break;
Mike Fiore 14:19fae4509473 43 case LORAMAC_EVENT_INFO_STATUS_RX_TIMEOUT:
Mike Fiore 14:19fae4509473 44 msg = "RX_TIMEOUT";
Mike Fiore 14:19fae4509473 45 break;
Mike Fiore 14:19fae4509473 46 case LORAMAC_EVENT_INFO_STATUS_RX_ERROR:
Mike Fiore 14:19fae4509473 47 msg = "RX_ERROR";
Mike Fiore 14:19fae4509473 48 break;
Mike Fiore 14:19fae4509473 49 case LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL:
Mike Fiore 14:19fae4509473 50 msg = "JOIN_FAIL";
Mike Fiore 14:19fae4509473 51 break;
Mike Fiore 14:19fae4509473 52 case LORAMAC_EVENT_INFO_STATUS_DOWNLINK_FAIL:
Mike Fiore 14:19fae4509473 53 msg = "DOWNLINK_FAIL";
Mike Fiore 14:19fae4509473 54 break;
Mike Fiore 14:19fae4509473 55 case LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL:
Mike Fiore 14:19fae4509473 56 msg = "ADDRESS_FAIL";
Mike Fiore 14:19fae4509473 57 break;
Mike Fiore 14:19fae4509473 58 case LORAMAC_EVENT_INFO_STATUS_MIC_FAIL:
Mike Fiore 14:19fae4509473 59 msg = "MIC_FAIL";
Mike Fiore 14:19fae4509473 60 break;
Mike Fiore 14:19fae4509473 61 default:
Mike Fiore 14:19fae4509473 62 break;
Mike Fiore 14:19fae4509473 63 }
Mike Fiore 14:19fae4509473 64 logTrace("Event: %s", msg.c_str());
Jason Reiss 34:f6486829a451 65
Mike Fiore 14:19fae4509473 66 logTrace("Flags Tx: %d Rx: %d RxData: %d RxSlot: %d LinkCheck: %d JoinAccept: %d",
Mike Fiore 14:19fae4509473 67 flags->Bits.Tx, flags->Bits.Rx, flags->Bits.RxData, flags->Bits.RxSlot, flags->Bits.LinkCheck, flags->Bits.JoinAccept);
Mike Fiore 14:19fae4509473 68 logTrace("Info: Status: %d ACK: %d Retries: %d TxDR: %d RxPort: %d RxSize: %d RSSI: %d SNR: %d Energy: %d Margin: %d Gateways: %d",
Mike Fiore 14:19fae4509473 69 info->Status, info->TxAckReceived, info->TxNbRetries, info->TxDatarate, info->RxPort, info->RxBufferSize,
Mike Fiore 14:19fae4509473 70 info->RxRssi, info->RxSnr, info->Energy, info->DemodMargin, info->NbGateways);
Mike Fiore 14:19fae4509473 71 }
Jason Reiss 34:f6486829a451 72
Mike Fiore 14:19fae4509473 73 if (flags->Bits.Rx) {
Jason Reiss 34:f6486829a451 74
Mike Fiore 14:19fae4509473 75 logDebug("Rx %d bytes", info->RxBufferSize);
Mike Fiore 14:19fae4509473 76 if (info->RxBufferSize > 0) {
jreiss 38:2c027824e046 77 #if ACTIVE_EXAMPLE != FOTA_EXAMPLE
Jason Reiss 34:f6486829a451 78 // print RX data as string and hexadecimal
Mike Fiore 14:19fae4509473 79 std::string rx((const char*)info->RxBuffer, info->RxBufferSize);
Mike Fiore 21:09d05faf0e13 80 printf("Rx data: %s [%s]\r\n", rx.c_str(), mts::Text::bin2hexString(info->RxBuffer, info->RxBufferSize).c_str());
Jason Reiss 36:f1053cb17d4f 81 #endif
Mike Fiore 14:19fae4509473 82 }
Mike Fiore 14:19fae4509473 83 }
Mike Fiore 14:19fae4509473 84 }
Jason Reiss 41:67feacfab49c 85
Jason Reiss 41:67feacfab49c 86 #if ACTIVE_EXAMPLE == FOTA_EXAMPLE
Jason Reiss 41:67feacfab49c 87 virtual void ServerTime(uint32_t seconds, uint8_t sub_seconds) {
Jason Reiss 41:67feacfab49c 88 mDotEvent::ServerTime(seconds, sub_seconds);
Jason Reiss 41:67feacfab49c 89
Jason Reiss 41:67feacfab49c 90 Fota::getInstance()->setClockOffset(seconds);
Jason Reiss 41:67feacfab49c 91 }
Jason Reiss 41:67feacfab49c 92 #endif
Mike Fiore 14:19fae4509473 93 };
Mike Fiore 14:19fae4509473 94
Mike Fiore 14:19fae4509473 95 #endif
Mike Fiore 14:19fae4509473 96