Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mDot_AT_firmware by
Dot Library Not Included!
Because these example programs can be used for both mDot and xDot devices, the LoRa stack is not included. The libmDot library should be imported if building for mDot devices. The libxDot library should be imported if building for xDot devices. Check the commit messages of the Dot library version used to find the correct mbed-os version to use with it. The mbed-os version must match the version used in that version of Dot library or it will likely cause it to fail to compile or have unexpected problems while running.
Dot Library Version 3 Updates
Dot Library versions 3.x.x require a channel plan to be injected into the stack. The Dot-Examples and Dot-AT-Firmware do this by defining a macro called "CHANNEL_PLAN" that controls the channel plan that will be used in the examples. Available channel plans will be in the Dot Library repository in the plans folder.
Revision 20 and earlier of Dot-Examples and revision 15 and earlier of Dot-AT-Firmware should be used with Dot Library versions prior to 3.0.0.
Fota Library
Th Fota Library must be added to compile for mDot 3.1.0 with Fota support. Latest dev libraries and 3.2.0 release will include Fota with libmDot/libxDot.
AT Firmware Description
This AT Firmware is what ships on mDot and xDot devices. It provides an AT command interface for using the mDot or xDot for LoRa communication.
AT command documentation can be found on Multitech.com.
The firmware changelog can be found here.
The library changelog can be found here.
Dot Libraries
Dot Library Limitations
The commit messages in libmDot-mbed5 and libmDot-dev-mbed5 specify the version of the Dot library the commit contains and the version of mbed-os it was compiled against. We recommend building your application with the version of mbed-os specified in the commit message of the version of the Dot library you're using. This will ensure that you don't run into any runtime issues caused by differences in the mbed-os versions.
Stable and development libraries are available for both mDot and xDot platforms. The library chosen must match the target platform. Compiling for the mDot platform with the xDot library or vice versa will not succeed.
mDot Library
Development library for mDot.
Stable library for mDot.
xDot Library
Development library for xDot.
Stable library for xDot.
CommandTerminal/CommandTerminal.cpp
- Committer:
- jreiss
- Date:
- 2019-03-08
- Revision:
- 19:7d87f36bca8a
- Parent:
- 18:63f098f042b2
- Child:
- 20:704ce2249f5a
File content as of revision 19:7d87f36bca8a:
#include "ctype.h"
#include "CmdFactory.h"
#include "CommandTerminal.h"
#include "Command.h"
#include "MTSLog.h"
#include "ChannelPlan.h"
#include <cstdarg>
#include <deque>
#if defined(TARGET_XDOT_L151CC)
#include "xdot_low_power.h"
#endif
#if defined(TARGET_MTS_MDOT_F411RE)
const char CommandTerminal::banner[] = "\r\n\nMultiTech Systems LoRa XBee Module\r\n\n";
#else
const char CommandTerminal::banner[] = "\r\n\nMultiTech Systems LoRa xDot Module\r\n\n";
#endif
const char CommandTerminal::helpline[] = "Enter '?' for help\r\n";
const char CommandTerminal::newline[] = "\r\n";
// Command error text...
const char CommandTerminal::command_error[] = "Command not found!\r\n";
// Response texts...
const char CommandTerminal::help[] = "\r\nHelp\r\n";
const char CommandTerminal::cmd_error[] = "Invalid command\r\n";
const char CommandTerminal::connect[] = "\r\nCONNECT\r\n";
const char CommandTerminal::no_carrier[] = "\r\nNO CARRIER\r\n";
const char CommandTerminal::done[] = "\r\nOK\r\n";
const char CommandTerminal::error[] = "\r\nERROR\r\n";
// Escape sequence...
const char CommandTerminal::escape_sequence[] = "+++";
mts::ATSerial* CommandTerminal::_serialp = NULL;
mDot* CommandTerminal::_dot = NULL;
CommandTerminal::RadioEvent* CommandTerminal::_events = new RadioEvent();
static bool serial_data_mode = false;
static bool peer_to_peer = false;
std::string CommandTerminal::_errorMessage = "";
static uint8_t _battery_level = 0xFF;
void CommandTerminal::setErrorMessage(const char* message) {
_errorMessage.assign(message);
}
void CommandTerminal::setErrorMessage(const std::string& message) {
_errorMessage.assign(message);
}
CommandTerminal::CommandTerminal(mts::ATSerial& serial) :
_serial(serial),
_mode(mDot::COMMAND_MODE),
_sleep_standby(true),
#if defined(TARGET_MTS_MDOT_F411RE)
_xbee_on_sleep(XBEE_ON_SLEEP),
#else
_xbee_on_sleep(GPIO2),
#endif
_autoOTAEnabled(false)
{
_serialp = &serial;
}
void CommandTerminal::init() {
_dot->setEvents(_events);
}
void CommandTerminal::printHelp() {
const char* name = NULL;
const char* text = NULL;
const char* desc = NULL;
const char* tab = "\t";
std::string header("Command");
header.append(tab);
header.append(tab);
header.append("Name");
header.append(tab);
header.append(tab);
header.append(tab);
header.append("Description");
write(newline);
write(header.c_str());
write(newline);
write(newline);
Command *cmd = NULL;
for (int i = 0; i < CmdFactory::NUMBER_OF_CMDS; i++) {
cmd = CmdFactory::Create(static_cast<CmdFactory::CmdId_t>(i));
name = cmd->name();
text = cmd->text();
desc = cmd->desc();
write(text);
if (strlen(text) < 8)
write(tab);
write(tab);
write(name);
if (strlen(name) < 8)
write(tab);
if (strlen(name) < 16)
write(tab);
write(tab);
write(desc);
write(newline);
delete cmd;
}
write(newline);
}
bool CommandTerminal::writeable() {
return _serialp->writeable();
}
bool CommandTerminal::readable() {
return _serialp->readable();
}
char CommandTerminal::read() {
char ch;
_serialp->read(&ch, 1);
return ch;
}
void CommandTerminal::write(const char* message) {
while (!writeable())
;
_serialp->write(message, strlen(message));
}
void CommandTerminal::writef(const char* format, ...) {
char buff[256];
va_list ap;
va_start(ap, format);
int size = vsnprintf(buff, 256, format, ap);
while (!writeable())
;
_serialp->write(buff, size);
va_end(ap);
}
void CommandTerminal::serialLoop() {
Timer serial_read_timer;
std::vector<uint8_t> serial_buffer;
std::vector<uint8_t> data;
int timeout = 0;
serial_read_timer.start();
if (_dot->getStartUpMode() == mDot::SERIAL_MODE) {
_xbee_on_sleep = GPIO_PIN_SET;
timeout = _dot->getWakeDelay();
// wait for timeout or start of serial data
while (!readable() && serial_read_timer.read_ms() < timeout && !_serialp->escaped()) {
osDelay(2);
}
}
if (!readable() && _events->SendAck()) {
logDebug("SERIAL NOT READABLE and ACK REQUESTED");
goto L_SEND;
}
if (readable() && !_serialp->escaped()) {
serial_read_timer.reset();
timeout = _dot->getWakeTimeout();
while (serial_read_timer.read_ms() < timeout && serial_buffer.size() <= _dot->getMaxPacketLength()) {
while (readable() && serial_buffer.size() < _dot->getMaxPacketLength()) {
serial_buffer.push_back(read());
serial_read_timer.reset();
if (_serialp->escaped())
break;
}
}
serial_read_timer.stop(), serial_read_timer.reset();
if (!serial_buffer.empty()) {
if (_dot->getStartUpMode() == mDot::SERIAL_MODE)
_xbee_on_sleep = GPIO_PIN_RESET;
L_SEND:
// wait for any duty cycle limit to expire
while (_dot->getNextTxMs() > 0 && !_serialp->escaped()) {
osDelay(10);
}
if (_dot->getIsIdle()) {
logDebug("Received serial data, sending out radio.");
if (_dot->send(serial_buffer, false) != mDot::MDOT_OK) {
logDebug("Send failed.");
// If the data should be tossed after send failure, clear buffer
if (_dot->getSerialClearOnError()) {
serial_buffer.clear();
}
} else {
// wait for send to finish
while (!_dot->getIsIdle() && !_serialp->escaped()) {
osDelay(10);
}
// call recv to wait for any packet before sending again
if (!_serialp->escaped())
_dot->recv(data);
// Clear the serial buffer if send is success
serial_buffer.clear();
// In class C mode pending data will be sent automatically without uplink
if (_dot->getClass() != "C") {
if (_dot->getDataPending()) {
logDebug("Data is pending");
goto L_SEND;
}
if (_dot->getAckRequested()) {
logDebug("Ack requested");
goto L_SEND;
}
}
}
} else {
logDebug("Radio is busy, cannot send.\r\n");
osDelay(10);
}
} else {
logDebug("No data received from serial to send.\r\n");
}
}
if (!_serialp->readable() && _dot->getStartUpMode() == mDot::SERIAL_MODE && !_serialp->escaped()) {
sleep(true);
}
if (_serialp->escaped()) {
_serialp->clearEscaped();
_serialp->rxClear();
serial_data_mode = false;
_mode = mDot::COMMAND_MODE;
logDebug("Exit Serial Mode");
write(done);
return;
}
if (!_dot->getNetworkJoinStatus()) {
serial_data_mode = false;
_mode = mDot::COMMAND_MODE;
logDebug("Exit Serial Mode");
write(no_carrier);
return;
}
}
bool CommandTerminal::autoJoinCheck() {
std::string escape_buffer;
int sleep = 1000;
Timer tmr;
tmr.start();
int cnt = 0;
while (!_dot->getNetworkJoinStatus()) {
if (!serial_data_mode) {
write("\r\nJoining network... ");
}
logInfo("Joining network... ");
if (_dot->getNextTxMs() > 0) {
if (!serial_data_mode) {
writef("\r\nWaiting %lu s before next join attempt\r\n", _dot->getNextTxMs() / 1000);
}
logInfo("Waiting %lu s before next join attempt", _dot->getNextTxMs() / 1000);
tmr.reset();
while (_dot->getNextTxMs() > 0 && !_serial.escaped()) {
osDelay(20);
}
}
if (!_serial.escaped() && _dot->joinNetworkOnce() == mDot::MDOT_OK) {
if (!serial_data_mode) {
write("Network Joined\r\n");
write(done);
}
logInfo("Network Joined");
return false;
}
if (!serial_data_mode) {
write("Network Join failed\r\n");
write(error);
}
logInfo("Network Join failed");
if (!_serial.escaped() && _dot->getFrequencySubBand() != 0 && _dot->getJoinRetries() > 0 && cnt++ > _dot->getJoinRetries()) {
cnt = 0;
if (lora::ChannelPlan::IsPlanFixed(_dot->getFrequencyBand())) {
uint8_t band = ((_dot->getFrequencySubBand()) % 8) + 1;
logWarning("Join retries exhausted, switching to sub band %u", band);
_dot->setFrequencySubBand(band);
}
}
tmr.reset();
while (tmr.read_ms() < sleep && !_serial.escaped()) {
osDelay(10);
}
if (_serial.escaped()) {
_serial.clearEscaped();
serial_data_mode = false;
_mode = mDot::COMMAND_MODE;
if (!serial_data_mode) {
write("Join Canceled\r\n");
write(done);
}
logInfo("Join Canceled\r\n");
return true;
}
}
return false;
}
void CommandTerminal::start() {
char ch;
bool running = true;
bool echo = _dot->getEcho();
std::string command;
#if defined(TARGET_MTS_MDOT_F411RE)
std::deque<std::string> history;
int history_index = -1;
#endif
std::vector<std::string> args;
bool join_canceled = false;
_autoOTAEnabled = _dot->getJoinMode() == mDot::AUTO_OTA;
if (_dot->getStartUpMode() == mDot::SERIAL_MODE) {
serial_data_mode = true;
_mode = mDot::SERIAL_MODE;
std::string escape_buffer;
char ch;
if (!_dot->getStandbyFlag()) {
// wake up from power-on/reset
int escape_timeout = 1000;
Timer tmr;
Timer escape_tmr;
// wait one second for possible escape by user pressing '+' key
tmr.reset();
tmr.start();
escape_tmr.reset();
escape_tmr.start();
while (tmr.read_ms() < escape_timeout) {
if (_serial.readable()) {
_serial.read(&ch, 1);
escape_buffer += ch;
}
if (escape_buffer.find("+") != std::string::npos) {
logInfo("Escape detected");
join_canceled = true;
serial_data_mode = false;
_mode = mDot::COMMAND_MODE;
command.clear();
break;
}
if (escape_tmr.read_ms() > escape_timeout)
escape_buffer.clear();
osDelay(1);
}
}
if (_mode == mDot::SERIAL_MODE && !_dot->getNetworkJoinStatus() && _dot->getJoinMode() == mDot::OTA) {
if (_dot->joinNetworkOnce() != mDot::MDOT_OK) {
serial_data_mode = false;
_mode = mDot::COMMAND_MODE;
logWarning("Start Up Mode set to SERIAL_MODE, but join failed.");
_serial.writef("Network Not Joined\r\n");
_serial.writef(error);
}
}
}
if (_dot->getJoinMode() == mDot::PEER_TO_PEER) {
peer_to_peer = true;
} else {
peer_to_peer = false;
}
//Run terminal session
while (running) {
// wait for input to reduce at command idle current
while (!readable() || _mode == mDot::SERIAL_MODE) {
if (!join_canceled && _autoOTAEnabled) {
join_canceled = autoJoinCheck();
if (join_canceled)
command.clear();
}
if (!_autoOTAEnabled || (!join_canceled && _autoOTAEnabled)) {
switch (_mode) {
case mDot::SERIAL_MODE:
// signal wakeup, read serial and output to radio
serialLoop();
continue;
break;
default:
break;
}
}
ch = '\0';
wait(0.00001); // 10 us
_serial.escaped();
}
// read characters
if (readable()) {
ch = read();
if (ch == '\b' || ch == 0x7f) {
if (!command.empty()) {
writef("\b \b");
command.erase(command.size() - 1);
}
continue;
} else if (ch == 0x1b || ch == 0x09) {
osDelay(20);
// catch escape sequence, or tab
char ch1 = 0x00, ch2 = 0x00;
if (readable()) {
ch1 = read();
if (readable())
ch2 = read();
#if defined(TARGET_MTS_MDOT_F411RE)
if (ch1 == 0x5b && ch2 == 0x41) {
// up key
for (size_t i = 0; i < command.size() + 1; i++) {
writef("\b \b");
}
if (history.size() > 0) {
if (++history_index >= int(history.size() - 1))
history_index = history.size() - 1;
command = history[history_index];
writef("%s", history[history_index].c_str());
} else {
command.clear();
}
} else if (ch1 == 0x5b && ch2 == 0x42) {
// down key
for (size_t i = 0; i < command.size() + 1; i++) {
writef("\b \b");
}
if (--history_index < 0) {
history_index = -1;
command.clear();
} else {
command = history[history_index];
writef("%s", history[history_index].c_str());
}
}
#endif
}
while (readable())
read();
continue;
} else {
command += ch;
}
// echo chars if enabled
if (echo && !(ch == '\r' || ch == '\n'))
writef("%c", ch);
}
// look for end of command line
if (command.find("\n") != std::string::npos || command.find("\r") != std::string::npos) {
// remove new line or cr character
command.erase(command.size() - 1);
write("\r"); // match standard modem output
write(newline);
} else {
continue;
}
// trim whitespace from command
mts::Text::trim(command, "\r\n\t ");
if (command.size() < 1) {
command.clear();
continue;
}
// parse command and args
args.clear();
// find first '=' character
size_t delim_index = command.find("=");
if (delim_index != std::string::npos) {
args.push_back(command.substr(0, delim_index));
} else {
// find first ' ' character
delim_index = command.find(" ");
if (delim_index != std::string::npos) {
args.push_back(command.substr(0, delim_index));
} else {
args.push_back(command);
}
}
if (delim_index != std::string::npos) {
std::vector<std::string> params = mts::Text::split(command.substr(delim_index + 1), ",");
args.insert(args.end(), params.begin(), params.end());
}
args[0] = mts::Text::toUpper(args[0]);
// print help
if ((args[0].find("?") == 0 || args[0].find("HELP") == 0) && args.size() == 1) {
printHelp();
command.clear();
} else if ((args[0].find("ATE?") == 0 && args[0].length() == 4) || (args[0].find("ATE") == 0 && args[0].length() == 3)) {
writef("%d\r\n", _dot->getEcho());
write(done);
} else if (args[0].find("ATE0") == 0 && args[0].length() == 4) {
_dot->setEcho(false);
write(done);
echo = _dot->getEcho();
} else if (args[0].find("ATE1") == 0 && args[0].length() == 4) {
_dot->setEcho(true);
write(done);
echo = _dot->getEcho();
} else if ((args[0].find("ATV?") == 0 && args[0].length() == 4) || (args[0].find("ATV") == 0 && args[0].length() == 3)) {
writef("%d\r\n", _dot->getVerbose());
write(done);
} else if (args[0].find("ATV0") == 0 && args[0].length() == 4) {
_dot->setVerbose(false);
write(done);
} else if (args[0].find("ATV1") == 0 && args[0].length() == 4) {
_dot->setVerbose(true);
write(done);
} else if ((args[0].find("AT&K?") == 0 && args[0].length() == 5) || (args[0].find("AT&K") == 0 && args[0].length() == 4)) {
writef("%d\r\n", (_dot->getFlowControl() ? 3 : 0));
write(done);
} else if (args[0].find("AT&K0") == 0 && args[0].length() == 5) {
_dot->setFlowControl(false);
write(done);
} else if (args[0].find("AT&K3") == 0 && args[0].length() == 5) {
_dot->setFlowControl(true);
write(done);
} else if (args[0] == "AT+SD") {
if (_dot->getNetworkJoinStatus()) {
logDebug("Enter Serial Mode");
write(connect);
serial_data_mode = true;
_mode = mDot::SERIAL_MODE;
} else {
logDebug("Network Not Joined");
write("Network Not Joined\r\n");
write(error);
}
} else if (args[0] == "AT+SLEEP") {
if (args.size() > 2 && (args[1] != "?")) {
write("Invalid argument\r\n");
write(error);
} else {
if (args.size() > 1 && args[1] == "?") {
write("(0:deepsleep,1:sleep)\r\n");
write(done);
} else {
_sleep_standby = !(args.size() > 1 && args[1] == "1");
#if defined(TARGET_MTS_MDOT_F411RE)
//Read the board ID. If all 0's, it is revision B. This hardware does not support deep sleep.
DigitalIn ID2(PC_4);
DigitalIn ID1(PC_5);
DigitalIn ID0(PD_2);
if(ID2 == 0 && ID1 == 0 && ID0 == 0 && _sleep_standby == 1){
_sleep_standby = 0;
logWarning("This hardware version does not support deep sleep. Using sleep mode instead.");
}
#endif
write(done);
osDelay(5);
this->sleep(_sleep_standby);
osDelay(1);
}
}
} else {
bool found = false;
bool query = false;
std::string lookfor = args[0];
// per command help
if ((args[0].find("?") == 0 || args[0].find("HELP") == 0))
lookfor = mts::Text::toUpper(args[1]);
// trim off any trailing '?' and mark as a query command
if (args[0].rfind("?") == args[0].length() - 1) {
query = true;
lookfor = args[0].substr(0, args[0].length() - 1);
}
// search for command
Command *cmd = NULL;
for (int i = 0; i < CmdFactory::NUMBER_OF_CMDS; i++) {
cmd = CmdFactory::Create(static_cast<CmdFactory::CmdId_t>(i));
// match CMD or CMD? syntax if command is queryable
if (lookfor == cmd->text() && (!query || (query && cmd->queryable()))) {
found = true;
if (args[0] == "HELP") {
writef("%s%s", cmd->help().c_str(), newline);
write(done);
}
else if (args.size() > 1 && args[1] == "?") {
writef("%s%s", cmd->usage().c_str(), newline);
write(done);
} else if (!cmd->verify(args)) {
writef("%s%s", _errorMessage.c_str(), newline);
writef("%s", error);
} else {
if (cmd->action(args) == 0) {
writef("%s", done);
} else {
writef("%s%s", _errorMessage.c_str(), newline);
writef("%s", error);
}
}
}
delete cmd;
}
if (!found) {
writef("%s", command_error);
writef("%s", error);
}
}
#if defined(TARGET_MTS_MDOT_F411RE)
if (history.size() == 0 || history.front() != command)
history.push_front(command);
history_index = -1;
command.clear();
while (history.size() > 10)
history.pop_back();
#else
command.clear();
#endif
}
}
void CommandTerminal::sleep(bool standby) {
_xbee_on_sleep = GPIO_PIN_RESET;
_serial.rxClear();
_serial.txClear();
#if defined(TARGET_XDOT_L151CC)
xdot_save_gpio_state();
/* GPIO Ports Clock Enable */
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
__GPIOH_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
// UART1_TX, UART1_RTS & UART1_CTS to analog nopull - RX could be a wakeup source
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_11 | GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// I2C_SDA & I2C_SCL to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// SPI_MOSI, SPI_MISO, SPI_SCK, & SPI_NSS to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// iterate through potential wake pins - leave the configured wake pin alone if one is needed
if (_dot->getWakePin() != WAKE || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != GPIO0 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != GPIO1 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != GPIO2 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
if (_dot->getWakePin() != GPIO3 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
if (_dot->getWakePin() != UART1_RX || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
#else
uint32_t portA[6];
uint32_t portB[6];
uint32_t portC[6];
uint32_t portD[6];
uint32_t portH[6];
//Save the GPIO state.
portA[0] = GPIOA->MODER;
portA[1] = GPIOA->OTYPER;
portA[2] = GPIOA->OSPEEDR;
portA[3] = GPIOA->PUPDR;
portA[4] = GPIOA->AFR[0];
portA[5] = GPIOA->AFR[1];
portB[0] = GPIOB->MODER;
portB[1] = GPIOB->OTYPER;
portB[2] = GPIOB->OSPEEDR;
portB[3] = GPIOB->PUPDR;
portB[4] = GPIOB->AFR[0];
portB[5] = GPIOB->AFR[1];
portC[0] = GPIOC->MODER;
portC[1] = GPIOC->OTYPER;
portC[2] = GPIOC->OSPEEDR;
portC[3] = GPIOC->PUPDR;
portC[4] = GPIOC->AFR[0];
portC[5] = GPIOC->AFR[1];
portD[0] = GPIOD->MODER;
portD[1] = GPIOD->OTYPER;
portD[2] = GPIOD->OSPEEDR;
portD[3] = GPIOD->PUPDR;
portD[4] = GPIOD->AFR[0];
portD[5] = GPIOD->AFR[1];
portH[0] = GPIOH->MODER;
portH[1] = GPIOH->OTYPER;
portH[2] = GPIOH->OSPEEDR;
portH[3] = GPIOH->PUPDR;
portH[4] = GPIOH->AFR[0];
portH[5] = GPIOH->AFR[1];
/* GPIO Ports Clock Enable */
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
// Set port A pins to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_6 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10
| GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// Set port B pins to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// Set port C pins to analog nopull
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
// iterate through potential wake pins - leave the configured wake pin alone if one is needed
// XBEE_DIN - PA3
// XBEE_DIO2 - PA5
// XBEE_DIO3 - PA4
// XBEE_DIO4 - PA7
// XBEE_DIO5 - PC1
// XBEE_DIO6 - PA1
// XBEE_DIO7 - PA0
// XBEE_SLEEPRQ - PA11
if (_dot->getWakePin() != XBEE_DIN || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO2 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO3 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO4 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO5 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO6 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_DIO7 || _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
if (_dot->getWakePin() != XBEE_SLEEPRQ|| _dot->getWakeMode() == mDot::RTC_ALARM) {
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
#endif
_dot->sleep(_dot->getWakeInterval(), _dot->getWakeMode(), standby);
#if defined(TARGET_XDOT_L151CC)
xdot_restore_gpio_state();
#else
//Restore the GPIO state.
GPIOA->MODER = portA[0];
GPIOA->OTYPER = portA[1];
GPIOA->OSPEEDR = portA[2];
GPIOA->PUPDR = portA[3];
GPIOA->AFR[0] = portA[4];
GPIOA->AFR[1] = portA[5];
GPIOB->MODER = portB[0];
GPIOB->OTYPER = portB[1];
GPIOB->OSPEEDR = portB[2];
GPIOB->PUPDR = portB[3];
GPIOB->AFR[0] = portB[4];
GPIOB->AFR[1] = portB[5];
GPIOC->MODER = portC[0];
GPIOC->OTYPER = portC[1];
GPIOC->OSPEEDR = portC[2];
GPIOC->PUPDR = portC[3];
GPIOC->AFR[0] = portC[4];
GPIOC->AFR[1] = portC[5];
GPIOD->MODER = portD[0];
GPIOD->OTYPER = portD[1];
GPIOD->OSPEEDR = portD[2];
GPIOD->PUPDR = portD[3];
GPIOD->AFR[0] = portD[4];
GPIOD->AFR[1] = portD[5];
GPIOH->MODER = portH[0];
GPIOH->OTYPER = portH[1];
GPIOH->OSPEEDR = portH[2];
GPIOH->PUPDR = portH[3];
GPIOH->AFR[0] = portH[4];
GPIOH->AFR[1] = portH[5];
#endif
_serial.rxClear();
_serial.txClear();
Fota::getInstance()->fixEventQueue();
}
std::string CommandTerminal::formatPacketData(const std::vector<uint8_t>& data, const uint8_t& format) {
if (format == mDot::HEXADECIMAL)
return mts::Text::bin2hexString(data);
else
return std::string(data.begin(), data.end());
}
bool CommandTerminal::waitForEscape(int timeout, mDot* dot, WaitType wait) {
Timer timer;
timer.start();
while (timer.read_ms() < timeout) {
if (dot != NULL) {
if (wait == WAIT_SEND && (!dot->getIsTransmitting())) {
return false;
}
}
if (_serialp != NULL && _serialp->escaped()) {
_serialp->clearEscaped();
return true;
}
osDelay(10);
}
return false;
}
void CommandTerminal::wakeup(void) {
}
void CommandTerminal::RadioEvent::PacketRx(uint8_t port, uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr, lora::DownlinkControl ctrl, uint8_t slot, uint8_t retries, uint32_t address, bool dupRx) {
mDotEvent::PacketRx(port, payload, size, rssi, snr, ctrl, slot, retries, address, dupRx);
if(port == 200 || port == 201 || port == 202) {
Fota::getInstance()->processCmd(payload, port, size);
}
if (serial_data_mode && port != 0) {
logDebug("Rx %d bytes", size);
if (size > 0) {
CommandTerminal::Serial()->write((char*) RxPayload, RxPayloadSize);
}
if (!CommandTerminal::Serial()->readable() && _dot->getAckRequested() && _dot->getClass() == "C") {
_sendAck = true;
}
}
}
uint8_t CommandTerminal::getBatteryLevel() {
return _battery_level;
}
void CommandTerminal::setBatteryLevel(uint8_t battery_level) {
_battery_level = battery_level;
}
CommandTerminal::~CommandTerminal() {
delete _events;
}


