A library for setting up Secure Socket Layer (SSL) connections and verifying remote hosts using certificates. Contains only the source files for mbed platform implementation of the library.
Dependents: HTTPClient-SSL HTTPClient-SSL HTTPClient-SSL HTTPClient-SSL
cyassl/ctaocrypt/integer.h
- Committer:
- Vanger
- Date:
- 2015-01-19
- Revision:
- 0:b86d15c6ba29
File content as of revision 0:b86d15c6ba29:
/* integer.h * * Copyright (C) 2006-2014 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ /* * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca, * http://math.libtomcrypt.com */ #ifndef CTAO_CRYPT_INTEGER_H #define CTAO_CRYPT_INTEGER_H /* may optionally use fast math instead, not yet supported on all platforms and may not be faster on all */ #include <cyassl/ctaocrypt/types.h> /* will set MP_xxBIT if not default */ #ifdef USE_FAST_MATH #include <cyassl/ctaocrypt/tfm.h> #else #ifndef CHAR_BIT #include <limits.h> #endif #include <cyassl/ctaocrypt/mpi_class.h> #ifndef MIN #define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX #define MAX(x,y) ((x)>(y)?(x):(y)) #endif #ifdef __cplusplus extern "C" { /* C++ compilers don't like assigning void * to mp_digit * */ #define OPT_CAST(x) (x *) #else /* C on the other hand doesn't care */ #define OPT_CAST(x) #endif /* detect 64-bit mode if possible */ #if defined(__x86_64__) #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) #define MP_64BIT #endif #endif /* if intel compiler doesn't provide 128 bit type don't turn on 64bit */ #if defined(MP_64BIT) && defined(__INTEL_COMPILER) && !defined(HAVE___UINT128_T) #undef MP_64BIT #endif /* some default configurations. * * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * * At the very least a mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT typedef unsigned char mp_digit; typedef unsigned short mp_word; #elif defined(MP_16BIT) || defined(NO_64BIT) typedef unsigned short mp_digit; typedef unsigned int mp_word; #elif defined(MP_64BIT) /* for GCC only on supported platforms */ typedef unsigned long long mp_digit; /* 64 bit type, 128 uses mode(TI) */ typedef unsigned long mp_word __attribute__ ((mode(TI))); #define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ #if defined(_MSC_VER) || defined(__BORLANDC__) typedef unsigned __int64 ulong64; #else typedef unsigned long long ulong64; #endif typedef unsigned int mp_digit; /* long could be 64 now, changed TAO */ typedef ulong64 mp_word; #ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ #define DIGIT_BIT 31 #else /* default case is 28-bit digits, defines MP_28BIT as a handy test macro */ #define DIGIT_BIT 28 #define MP_28BIT #endif #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ #endif #define MP_DIGIT_BIT DIGIT_BIT #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ #define MP_LT -1 /* less than */ #define MP_EQ 0 /* equal to */ #define MP_GT 1 /* greater than */ #define MP_ZPOS 0 /* positive integer */ #define MP_NEG 1 /* negative */ #define MP_OKAY 0 /* ok result */ #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ typedef int mp_err; /* define this to use lower memory usage routines (exptmods mostly) */ #define MP_LOW_MEM /* default precision */ #ifndef MP_PREC #ifndef MP_LOW_MEM #define MP_PREC 32 /* default digits of precision */ #else #define MP_PREC 1 /* default digits of precision */ #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) /* the infamous mp_int structure */ typedef struct { int used, alloc, sign; mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define USED(m) ((m)->used) #define DIGIT(m,k) ((m)->dp[(k)]) #define SIGN(m) ((m)->sign) /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) #define mp_iseven(a) \ (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) #define mp_isodd(a) \ (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) /* number of primes */ #ifdef MP_8BIT #define PRIME_SIZE 31 #else #define PRIME_SIZE 256 #endif #define mp_prime_random(a, t, size, bbs, cb, dat) \ mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) #define mp_mag_size(mp) mp_unsigned_bin_size(mp) #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) #define mp_tobinary(M, S) mp_toradix((M), (S), 2) #define mp_tooctal(M, S) mp_toradix((M), (S), 8) #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) extern const char *mp_s_rmap; /* 6 functions needed by Rsa */ int mp_init (mp_int * a); void mp_clear (mp_int * a); int mp_unsigned_bin_size(mp_int * a); int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c); int mp_to_unsigned_bin (mp_int * a, unsigned char *b); int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); /* end functions needed by Rsa */ /* functions added to support above needed, removed TOOM and KARATSUBA */ int mp_count_bits (mp_int * a); int mp_leading_bit (mp_int * a); int mp_init_copy (mp_int * a, mp_int * b); int mp_copy (mp_int * a, mp_int * b); int mp_grow (mp_int * a, int size); int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d); void mp_zero (mp_int * a); void mp_clamp (mp_int * a); void mp_exch (mp_int * a, mp_int * b); void mp_rshd (mp_int * a, int b); void mp_rshb (mp_int * a, int b); int mp_mod_2d (mp_int * a, int b, mp_int * c); int mp_mul_2d (mp_int * a, int b, mp_int * c); int mp_lshd (mp_int * a, int b); int mp_abs (mp_int * a, mp_int * b); int mp_invmod (mp_int * a, mp_int * b, mp_int * c); int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c); int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); int mp_cmp_mag (mp_int * a, mp_int * b); int mp_cmp (mp_int * a, mp_int * b); int mp_cmp_d(mp_int * a, mp_digit b); void mp_set (mp_int * a, mp_digit b); int mp_mod (mp_int * a, mp_int * b, mp_int * c); int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); int mp_div_2(mp_int * a, mp_int * b); int mp_add (mp_int * a, mp_int * b, mp_int * c); int s_mp_add (mp_int * a, mp_int * b, mp_int * c); int s_mp_sub (mp_int * a, mp_int * b, mp_int * c); int mp_sub (mp_int * a, mp_int * b, mp_int * c); int mp_reduce_is_2k_l(mp_int *a); int mp_reduce_is_2k(mp_int *a); int mp_dr_is_modulus(mp_int *a); int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int); int mp_montgomery_setup (mp_int * n, mp_digit * rho); int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho); int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho); void mp_dr_setup(mp_int *a, mp_digit *d); int mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k); int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs); int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs); int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); int mp_reduce (mp_int * x, mp_int * m, mp_int * mu); int mp_reduce_setup (mp_int * a, mp_int * b); int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); int mp_montgomery_calc_normalization (mp_int * a, mp_int * b); int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); int s_mp_sqr (mp_int * a, mp_int * b); int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); int fast_s_mp_sqr (mp_int * a, mp_int * b); int mp_init_size (mp_int * a, int size); int mp_div_3 (mp_int * a, mp_int *c, mp_digit * d); int mp_mul_2(mp_int * a, mp_int * b); int mp_mul (mp_int * a, mp_int * b, mp_int * c); int mp_sqr (mp_int * a, mp_int * b); int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d); int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); int mp_2expt (mp_int * a, int b); int mp_reduce_2k_setup(mp_int *a, mp_digit *d); int mp_add_d (mp_int* a, mp_digit b, mp_int* c); int mp_set_int (mp_int * a, unsigned long b); int mp_sub_d (mp_int * a, mp_digit b, mp_int * c); /* end support added functions */ /* added */ int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f); #if defined(HAVE_ECC) || defined(CYASSL_KEY_GEN) int mp_sqrmod(mp_int* a, mp_int* b, mp_int* c); #endif #ifdef HAVE_ECC int mp_read_radix(mp_int* a, const char* str, int radix); #endif #ifdef CYASSL_KEY_GEN int mp_prime_is_prime (mp_int * a, int t, int *result); int mp_gcd (mp_int * a, mp_int * b, mp_int * c); int mp_lcm (mp_int * a, mp_int * b, mp_int * c); #endif int mp_cnt_lsb(mp_int *a); int mp_mod_d(mp_int* a, mp_digit b, mp_digit* c); #ifdef __cplusplus } #endif #endif /* USE_FAST_MATH */ #endif /* CTAO_CRYPT_INTEGER_H */