Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ADS1015 MPU6050 PixelArray-Nucleo mbed
Fork of Nucleo-transfer by
Sensorplate/main.cpp
- Committer:
- ricardo_95
- Date:
- 2017-10-02
- Revision:
- 24:782c4dc4a3ff
- Parent:
- 23:4a09554bdc1a
- Child:
- 25:96c34634abda
File content as of revision 24:782c4dc4a3ff:
/********************* CODE INFORMATIE ******************************
Author : Danny Eldering & Ricardo Molenaar
Company : Momo Medical
Source : developer.mbed.org
File : main.cpp
Version | -date : 1.0 | 28-9-2017
*/
/************************ CONFIG ***********************************/
#include "mbed.h"
#include "Adafruit_ADS1015.h"
#include "MPU6050.h"
#include "neopixel.h"
#define NLED (3)
#define ONE_COLOR
InterruptIn lock(p16); // Interrupts for buttons.
InterruptIn reposition(p17);
InterruptIn mute(p15);
InterruptIn new_patient(p18);
DigitalIn supplyvoltage(p20); // Analog input between 0 and 1 for reading supplyvoltage from measuringpoint before power supply.
DigitalOut LED_intern1(LED1);
DigitalOut LED_intern2(LED2);
DigitalOut LED_intern3(LED3);
neopixel::PixelArray array(p11);
Timer lock_hold_timer;
Timer calibration_hold_timer;
Timer delay;
Timer speaker_timer;
//Timer led_timer;
DigitalOut speaker1(p21);
DigitalOut speaker2(p22);
PwmOut lock_LED(p23);
PwmOut reposition_LED(p24);
PwmOut mute_LED(p25);
PwmOut new_patient_LED(p26);
I2C i2c(p28, p27); // I2C
I2C i2cAccu(p9, p10); // I2C for accupack
MPU6050 agu(p28,p27); // Accelerometer/Gyroscope Unit
Adafruit_ADS1115 pr1(&i2c, 0x48); // first PiëzoResistive ADC
Adafruit_ADS1115 pr2(&i2c, 0x49); // second PiëzoResistive ADC
Adafruit_ADS1115 pel(&i2c, 0x4B); // PiëzoElectric ADC
Adafruit_ADS1115 adsAccu(&i2cAccu, 0x48);
Serial pc(USBTX, USBRX); // tx, rx // Serial USB connection
Serial pi(p13, p14); // tx, rx // Setup serial communication for pi.
Timer t; // Timer for equally time-spaced samples
Ticker sample_cycle; // Polling cycle
int boot_delay_ms = 500;
int cycle_time = 100000; // Cycle time in us
int i2c_freq = 400000; // I2C Frequency
int baud = 115200; // Baud rate
short res[8] = {0,0,0,0,0,0,0,0}; // 8 PR sensors 1 time per cycle
short elec[5] = {0,0,0,0,0}; // 1 PE sensor 5 times per cycle
int angle = 0; // Accelerometer Z-axis
int k = 0;
float acce[3]; // Raw accelerometer data
float gyro[3]; // Raw gyroscope data
char LED_colour = 'g'; // Variable to set LED colour.
bool lock_state = 0, lock_flag = 0, mute_state = 0, alarm = 0, calibration_flag = 0, intensity_select = 0; // Boolean variables for states logging.
bool mute_flag = 0, new_patient_flag = 0, reposition_flag = 0, sensorplate_connect = 0;
bool speaker_state = 0, LED_red_state = 0, LED_yellow_state = 0, LED_green_state = 0, power_plug_state = 0;
bool speaker_logged = 0, LED_red_logged = 0, LED_yellow_logged = 0, LED_green_logged = 0, power_plug_logged = 0;
int locktime_ms = 2000; // Waittime for lock user interface in ms.
int calibrationtime_ms = 5000; // Time to press new_patient button for calibration system.
int calibration_flash; // Variable for flash LED's to indicate calibration.
int buttondelay_ms = 750; // Button delay in ms.
int delay_lock_interface = 3000*60; // Delay for non using interface locktime.
int speaker_active_ms = 750; // Time to iterate speaker on and off when alarm occurs.
int alarm_voltage = 5867; // Needed voltage for alarm expressed as a digital 15 bit value (=20% of max battery voltage)
int red_var, green_var, blue_var; // Variables to set LED intensity.
short batteryvoltage_current = 0, batteryvoltage_last = 0, powervoltage_current, powervoltage_last; // Variables to manage batteryvoltage.
int intensity_day = 50, intensity_night = 25; // Intensity settings for LED's to wall.
double intensity, control_LED_intensity = 0; // Variable between 0 and 1 to set the intensity of the LED's above the buttons.
/*************************** CODE ********************************/
void set_intensity() // Function to set the intensity for the LED's.
{
if (intensity_select == 1) {
intensity = intensity_day;
} else {
intensity = intensity_night;
}
control_LED_intensity = (intensity/100);
pc.printf("control_LED_intensity = %f\n", control_LED_intensity);
}
void serial_read() // Serial read for select LED intensity and colour.
{
if (pi.readable()) {
char message[10];
if (message[0] == '0') {
intensity_select = 0;
}
if (message[0] == '1') {
intensity_select = 1;
}
if (message[1] == 'g') {
LED_colour = 'g';
}
if (message[1] == 'y') {
LED_colour = 'y';
}
if (message[1] == 'r') {
LED_colour = 'r';
}
}
}
void serial_log()
{
if (mute_flag == 1) {
pi.printf(">01\n");
pc.printf(">01\n");
mute_flag = 0;
}
if (new_patient_flag == 1) {
pi.printf(">03\n");
pc.printf(">03\n");
new_patient_flag = 0;
}
if (reposition_flag == 1) {
pi.printf(">02\n");
pc.printf(">02\n");
reposition_flag = 0;
}
if (batteryvoltage_current != batteryvoltage_last) {
pi.printf("%%d\n", batteryvoltage_current);
batteryvoltage_last = batteryvoltage_current;
}
if (LED_red_logged != LED_red_state) {
if (LED_red_state == 1) {
pi.printf("&04\n");
LED_red_logged = LED_red_state;
}
if (LED_red_state == 0) {
pi.printf("&40\n");
LED_red_logged = LED_red_state;
}
}
if (LED_yellow_logged != LED_yellow_state) {
if (LED_yellow_state == 1) {
pi.printf("&06\n");
LED_yellow_logged = LED_yellow_state;
}
if (LED_yellow_state == 0) {
pi.printf("&60\n");
LED_yellow_logged = LED_yellow_state;
}
}
if (LED_green_logged != LED_green_state) {
if (LED_green_state == 1) {
pi.printf("&05\n");
LED_green_logged = LED_green_state;
}
if (LED_green_state == 0) {
pi.printf("&50\n");
LED_green_logged = LED_green_state;
}
}
if (speaker_logged != speaker_state) {
if (speaker_state == 1) {
pi.printf("&07\n");
speaker_logged = speaker_state;
}
if (speaker_state == 0) {
pi.printf("&70\n");
speaker_logged = speaker_state;
}
}
if (power_plug_logged != power_plug_state) {
if (power_plug_state == 1) {
pi.printf("#08\n");
pc.printf("#08 power on\n");
power_plug_logged = power_plug_state;
}
if (power_plug_state == 0) {
pi.printf("#80\n");
pc.printf("#08 power off\n");
power_plug_logged = power_plug_state;
}
}
}
void colour_select(char LED_colour) // Function to select the colour.
{
set_intensity(); // Call function set_intensity
if (LED_colour == 'r') {
red_var = (2.55*intensity);
green_var = 0;
blue_var = 0;
LED_red_state = 1;
} else {
LED_red_state = 0;
}
if (LED_colour == 'y') {
red_var = (2.55*intensity);
green_var = (2.55*intensity);
blue_var = 0;
LED_yellow_state = 1;
} else {
LED_green_state = 0;
}
if (LED_colour == 'g') {
red_var = 0;
green_var = (2.55*intensity);
blue_var = 0;
LED_green_state = 1;
} else {
LED_green_state = 0;
}
if (calibration_flash >= 1) {
if ((calibration_flash % 2) == 0) {
red_var = 255;
green_var = 255;
blue_var = 255;
} else {
red_var = 0;
green_var = 0;
blue_var = 0;
}
calibration_flash--;
}
}
void trigger_lock() // If rising edge lock button is detected start locktimer.
{
pc.printf("Lock triggered.\n");
lock_hold_timer.reset();
lock_hold_timer.start();
delay.reset();
delay.start();
}
void timer_lock() // End timer lock.
{
lock_flag = 0; // Set lock_flag off.
lock_hold_timer.stop(); // Stop and reset holdtimer
lock_hold_timer.reset();
}
void trigger_reposition()
{
if (lock_state == 1 | (delay.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time.
} else {
delay.reset();
delay.start();
pc.printf("Reposition triggered.\n");
if (LED_intern1 == 0) {
LED_intern1 = 1;
} else {
LED_intern1 = 0;
}
reposition_flag = 1;
reposition_LED = control_LED_intensity;
}
}
void rise_reposition()
{
reposition_LED = 0;
}
void trigger_mute()
{
if (lock_state == 1 | (delay.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time.
} else {
delay.reset();
delay.start();
mute_state = !mute_state;
if (mute_state == 1) {
mute_LED = control_LED_intensity;
} else {
mute_LED = 0;
}
pc.printf("Mute triggered %d.\n",mute_state);
if (LED_intern1 == 0) {
LED_intern1 = 1;
} else {
LED_intern1 = 0;
}
mute_flag = 1;
}
}
void trigger_new_patient() // Function to trigger hold timer for new patient calibration function.
{
if (lock_state == 1) {
} else {
calibration_hold_timer.reset();
calibration_hold_timer.start();
new_patient_LED = control_LED_intensity;;
pc.printf("New patient triggered.\n");
}
}
void timer_calibration() // Timer calibration function.
{
new_patient_LED = 0;
if (0 < calibration_hold_timer.read_ms() < calibrationtime_ms) {
new_patient_flag = 1;
}
calibration_hold_timer.stop();
calibration_hold_timer.reset();
if (lock_state == 1 | (delay.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time.
} else {
if (calibration_flag == 0) {
if (LED_intern1 == 0) {
LED_intern1 = 1;
} else {
LED_intern1 = 0;
}
} else {
calibration_flag = 0;
}
}
}
void timer_functions()
{
if ((lock_hold_timer.read_ms() > locktime_ms) && lock_flag == 0 && lock == 0) { // If statement for lock function.
lock_flag = 1;
LED_intern2 = !LED_intern2;
lock_state = !lock_state;
if (lock_state == 0) {
lock_LED = control_LED_intensity;
} else {
lock_LED = 0;
}
}
if ((calibration_hold_timer.read_ms() > calibrationtime_ms) && calibration_flag == 0 && new_patient == 0 && lock_state == 0) { // If statement for calibration system.
calibration_flag = 1;
calibration_flash = 11;
pc.printf("Calibrate triggered.\n");
pi.printf(">30\n"); // Print statement for serial communication to inform algorithm to calibrate.
}
if (delay.read_ms() > delay_lock_interface) { // If buttons are not pressed for 3 minutes, set lock active.
lock_state = 1;
LED_intern2 = 1;
lock_LED = 0;
}
}
void generate(neopixel::Pixel * out, uint32_t index, uintptr_t val) // Generate LED colour.
{
out->red = red_var;
out->green = green_var;
out->blue = blue_var;
}
void set_ui_LED() // Control functions for LED above buttons (added because of failures).
{
if (lock_state == 1) {
} else {
if (reposition == 0) {
reposition_LED = control_LED_intensity;
} else {
reposition_LED = 0;
}
if (new_patient == 0) {
new_patient_LED = control_LED_intensity;
} else {
new_patient_LED = 0;
}
}
}
void read_voltage()
{
if (power_plug_state == 1) { // If supplyvoltage (readed from input) is greater then the setted alarmvoltage.
alarm = 0; // Alarm is off.
speaker_state = 0;
} else {
alarm = 1; // Else alarm is on.
speaker_state = 1;
}
if (alarm == 1 && mute_state == 1 && (batteryvoltage_current > alarm_voltage)) { // Set speaker on for 750 ms.
speaker1 = 0; // Set speaker.
speaker2 = 0;
}
if ((alarm == 1 && mute_state == 0 && (speaker_timer.read_ms() < speaker_active_ms)) || ((batteryvoltage_current < alarm_voltage) && (speaker_timer.read_ms() < speaker_active_ms) && power_plug_state == 0)) { // Set speaker on for 750 ms.
speaker1 = 1; // Set speaker.
speaker2 = 1;
speaker_timer.start(); // Set timer for speaker to iterate on and off.
}
if ((speaker_timer.read_ms() > speaker_active_ms) && (speaker_timer.read_ms() < (speaker_active_ms*2))) {
speaker1 = 0; // Turn off speaker (use two outputs because of currentlimiting of one).
speaker2 = 0;
}
if (speaker_timer.read_ms() > (speaker_active_ms*2)) {
speaker_timer.stop(); // Stop speaker timer.
speaker_timer.reset();
}
batteryvoltage_current = adsAccu.readADC_SingleEnded(0); // Read channel 0 from external ADC.
powervoltage_current = adsAccu.readADC_SingleEnded(1); // Read channel 1 from external ADC.
if (powervoltage_current < 20000) {
power_plug_state = 0;
} else {
power_plug_state = 1;
}
}
void read_adc()
{
t.reset();
t.start();
if (sensorplate_connect == 1) {
elec[0] = pel.readADC_SingleEnded(0); // First PE readout
for (k = 0; k < 4; k = k + 1) {
res[k] = pr1.readADC_SingleEnded(k); // First 4 PR readout
}
while(t.read_us()<(1*(cycle_time/5))) {} // Wait untill 20% of cycle
elec[1] = pel.readADC_SingleEnded(0); // Second PE readout
for (k = 0; k < 4; k = k + 1) {
res[k+4] = pr2.readADC_SingleEnded(k); // Last 4 PR readout
}
while(t.read_us()<(2*(cycle_time/5))) {} // Wait untill 40% of cycle
elec[2] = pel.readADC_SingleEnded(0); // Third PE readout
agu.getAccelero(acce); // Get accelerometer data
angle = acce[2]*10;
agu.getGyro(gyro); // Get gyroscope data
while(t.read_us()<(3*(cycle_time/5))) {} // Wait untill 60% of cycle
elec[3] = pel.readADC_SingleEnded(0); // Fourth PE readout
}
timer_functions();
batteryvoltage_current = batteryvoltage_last;
powervoltage_current = powervoltage_last;
read_voltage(); // Supplyvoltage control for alarm.
pc.printf("Voltage = %d , %d\n", batteryvoltage_current, powervoltage_current);
uint32_t val = 0;
colour_select(LED_colour);
array.update(generate, NLED, val);
set_ui_LED();
while(t.read_us()<(4*(cycle_time/5))) {} // Wait untill 80% of cycle
if (sensorplate_connect == 1) {
elec[4] = pel.readADC_SingleEnded(0); // Fifth PE readout
}
while(t.read_us()<(4.25*(cycle_time/5))) {} // Wait untill 85% of cycle
pi.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%f,%f,%f,%f,%f,%f,\n", res[4], res[7], res[6], res[5], res[1], res[0], res[2], res[3], elec[0], elec[1], elec[2], elec[3], elec[4], acce[0]*100, acce[1]*100, acce[2]*100, gyro[0]*100, gyro[1]*100, gyro[2]*100); // print all to serial port
//receiving order: 8 resistive sensors, 5 electric readings, 3 accelerometer axes, 3 gyroscope axes
serial_read();
serial_log();
}
int main()
{
wait_ms(boot_delay_ms); // Wait to boot sensorplate first
i2c.frequency(i2c_freq);
i2cAccu.frequency(i2c_freq);
pc.baud(baud);
pi.baud(baud);
pr1.setGain(GAIN_TWOTHIRDS); // set range to +/-6.144V
pr2.setGain(GAIN_TWOTHIRDS); // set range to +/-6.144V
pel.setGain(GAIN_TWOTHIRDS); // set range to +/-6.144V
adsAccu.setGain(GAIN_TWOTHIRDS); // set range to +/-6.144V
pi.format(8, SerialBase::None, 1);
lock.fall(&trigger_lock); // Interrupt for rising edge lock button.
lock.rise(&timer_lock);
reposition.fall(&trigger_reposition);
reposition.rise(&rise_reposition);
mute.fall(&trigger_mute);
new_patient.fall(&trigger_new_patient); // New patient/calibration button rising event.
new_patient.rise(&timer_calibration); // Falling edge for calibration algorithm option.
delay.reset(); // Delaytimer reset en start.
delay.start();
set_intensity();
lock_LED = control_LED_intensity; // Lock LED initialization.
sample_cycle.attach_us(&read_adc, cycle_time);
while (1) {
wait_us(cycle_time+1); // wait indefinitely because the ticker restarts every 50 ms
}
}
