test

Dependencies:   ADS1015 MPU6050 MPU6050 PixelArray mbed

main.cpp

Committer:
Ishy
Date:
2017-11-30
Revision:
0:ad6765bb587f

File content as of revision 0:ad6765bb587f:

#include "mbed.h"                                                                   // Include files and define parameters.
#include "Adafruit_ADS1015.h"
#include "MPU6050.h"
#include "MPU6050_belt.h"
#include "neopixel.h"

#define NUMBER_LED_FRONT (3)  // declaren waarvoor dient                                                     
#define ONE_COLOR

//------------------------------------
// Hyperterminal configuration
// 9600 bauds, 8-bit data, no parity
//------------------------------------

//Serial pc(SERIAL_TX, SERIAL_RX, 115200);
//Serial pi(PC_10, PC_11, 115200);
//I2C i2c_sensorplate_adc(PB_9, PB_8);  
//MPU6050 angle_device_sensorplate(PB_9, PB_8);  
//DigitalOut myled(LED1);
//DigitalIn button_lock(PC_1);                                                       // Input on intterupt base decleration. 
//DigitalIn button_reposition(PC_2);
//DigitalIn button_mute(PC_0);
//DigitalIn button_new_patient(PC_3);
//
//MPU6050_belt angle_device_reference_belt(PB_9, PB_8);                                  // i2c pins // i2c address hardcoded 0x69.
//Adafruit_ADS1115 piezo_resistive_adc1(&i2c_sensorplate_adc, 0x48);                  // i2c pins, i2c address.
//Adafruit_ADS1115 piezo_resistive_adc2(&i2c_sensorplate_adc, 0x49);                  // i2c pins, i2c address.
//Adafruit_ADS1115 piezo_electric_adc(&i2c_sensorplate_adc, 0x4B);                    // i2c pins, i2c address.
//
//short piezo_resistive_array[8] = {0,0,0,0,0,0,0,0};                                 // 8 PR sensors 1 time per cycle.
//short piezo_electric_array[5] = {0,0,0,0,0};                                        // 1 PE sensor 5 times per cycle.
//int angle = 0;                                                                      // Accelerometer Z-axis.
//float accelerometer_sensorplate[3] = {0.0, 0.0, 0.0};                               // Raw accelerometer data.
//float gyroscope_sensorplate[3];                                                     // Raw gyroscope data.
//float accelerometer_reference_belt[3];                                              // Raw accelerometer data from belt.
//float gyroscope_reference_belt[3];   
//
//int connection_test_sensorplate; 

InterruptIn button_lock(PC_0);                                                       // Input on intterupt base decleration. 
InterruptIn button_reposition(PC_1);
InterruptIn button_mute(PC_2);
InterruptIn button_new_patient(PC_3);

DigitalOut  LED_on_dev_board1(LED1);                                                // Decleration of digital outputs.                                          
DigitalOut  LED_on_dev_board2(LED2);
DigitalOut  LED_on_dev_board3(LED3);
DigitalOut  LED_on_dev_board4(LED4);
DigitalOut speaker1(PC_8);               // relatie aangeven!
DigitalOut speaker2(PC_6);
//neopixel::PixelArray indicator_LEDs(PA_7);                                           

PwmOut lock_feedback_LED(PB_13);                                                      // Declaration of pulse with modulation outputs.                                
PwmOut mute_feedback_LED(PB_1);
PwmOut new_patient_feedback_LED(PB_14);
PwmOut reposition_feedback_LED(PB_15);

//Timer button_lock_hold_timer;                                                       // Timer for time lock button should be pressed.
//Timer button_calibration_hold_timer;                                                // Timer for calibration function (new patient holding 5 seconds).
//Timer delay_between_button_pressed;                                                 // Timer for time between two buttons (to prevent pressing buttons simultaneously). 
//Timer speaker_timer;                                                                // Timer for speaker activation.
Timer piezo_electric_sample_timer;                                                  // Timer for equally time-spaced samples.

/* 
The code underneath this commentbox has some fixed parameters for serial/ADC reading:
-> The address for the angle_device_reference_belt is set to 0x68 in the file MPU6050_belt (rule number: 19);
-> The adress for the angle_device_sensorplate is set to 0x69 in the file MPU6050.h (rule number: 19);
-> This is because of using the same I2C line;
-> For detailed information/questions about this item, please read the technical manual or contact: Ricardo Molenaar | ricardo.molenaar@gmail.com
*/
I2C i2c_sensorplate_adc(PB_9, PB_8);                                                  // I2C for sensorplate.
//I2C i2c_power_adc(PB_11, PB_10);                                                         // I2C for accupack. 
MPU6050 angle_device_sensorplate(PB_9, PB_8);                                          // i2c pins // i2c address hardcoded 0x68.
//MPU6050_belt angle_device_reference_belt(PB_9, PB_8);                                  // i2c pins // i2c address hardcoded 0x69.
Adafruit_ADS1115 piezo_resistive_adc1(&i2c_sensorplate_adc, 0x48);                  // i2c pins, i2c address.
Adafruit_ADS1115 piezo_resistive_adc2(&i2c_sensorplate_adc, 0x49);                  // i2c pins, i2c address.
Adafruit_ADS1115 piezo_electric_adc(&i2c_sensorplate_adc, 0x4B);                    // i2c pins, i2c address.
//Adafruit_ADS1115 adsAccu(&i2c_power_adc, 0x48);                                     // i2c pins, i2c address.
Serial usb_serial(SERIAL_TX, SERIAL_RX);                                            // tx, rx  
Serial pi_serial(PC_10, PC_11);                                                     // tx, rx  
Ticker total_readout_cycle;                                                         // Polling cycle.
// End of commentbox related to the serial configuration/ADC reading components. 

int boot_delay_ms = 500;
int total_readout_cycle_time_us = 100000;                                           // Cycle time in us.
int i2c__frequency = 400000;                                                              // I2C Frequency.
int baud_rate = 115200;                                                             // Baud rate.
short piezo_resistive_array[8] = {0,0,0,0,0,0,0,0};                                 // 8 PR sensors 1 time per cycle.
short piezo_electric_array[5] = {0,0,0,0,0};                                        // 1 PE sensor 5 times per cycle.
int angle = 0;                                                                      // Accelerometer Z-axis.
float accelerometer_sensorplate[3] = {0.0, 0.0, 0.0};                               // Raw accelerometer data.
float gyroscope_sensorplate[3];                                                     // Raw gyroscope data.
float accelerometer_reference_belt[3];                                              // Raw accelerometer data from belt.
float gyroscope_reference_belt[3];                                                  // Raw gyroscope data from belt.
char LED_colour = 'g';                                                              // Variable to set LED colour (standard set to green, untill PI sends other character). Other possible colours: red ('r') & yellow ('y').
bool lock_state = false, lock_flag = 0, mute_state = 0, alarm = 0, calibration_flag = 0, intensity_select = 1;            // Boolean variables for logging states.
bool mute_flag = 0, new_patient_flag = 0, reposition_flag = 0;                      // Flag variables.
bool speaker_state = 0, LED_red_state = 0, LED_yellow_state = 0, LED_green_state = 0, power_plug_state = 0;
bool speaker_logged = 0, LED_red_logged = 0, LED_yellow_logged = 0, LED_green_logged = 0, power_plug_logged = 0; // is toevoegen
int locktime_ms = 2000;                                                             // Waittime for lock user interface in ms.
int calibrationtime_ms = 5000;                                                      // Time to press new_patient button for calibration system.
int calibration_flash = 0;                                                          // Variable for flash LED's to indicate calibration.
int buttondelay_ms = 750;                                                           // Button delay in ms.
int delay_lock_interface = 3000*60;                                                 // Delay for non using interface locktime.
int speaker_active_ms = 750;                                                        // Time to iterate speaker on and off when alarm occurs.
int alarm_voltage = 2400;                                                           // Needed voltage for alarm expressed as a digital 15 bit value (= 20% of max battery voltage).
int LED_red_intensity = 0, LED_blue_intensity = 0, LED_green_intensity = 0;         // Variables to set LED intensity.
short batteryvoltage_current = 0, batteryvoltage_last = 0, powervoltage_current, powervoltage_last;                  // Variables to manage batteryvoltage. Maybe change current to other?
const int digital_value_ADC_powervoltage_unplugged = 15000;                         // Digital value to set the indicating LEDs to wall blue (should be set off later). const in hoofdletters
int intensity_day = 40, intensity_night = 10;                                       // Intensity settings for LED's to wall.
double intensity = 0.0, control_LED_intensity = 0.0;                                // Variable between 0 and 1 to set the intensity of the LED's above the buttons. Intensity change to smart name!

/*************************** TEST ********************************/
// Verify algoritm function: for belt activation, set test_belt 1 (connect pin p20 to 3.3V).
Timer test_timer;                                                           
DigitalIn test_pin(PA_11, PullDown);

// Variable to set if belt is used to test algorithm: 
bool test_belt = 0; 

// Set test mode on (log functions to pc serial: interrupts, LED intensity and serial messages): 
bool test_mode = 1;

// Variable for connection test (should be changed):
int connection_test_sensorplate; 


void read_adc() {
    piezo_electric_sample_timer.reset();                                            // Clock gebruiken o.i.d.?
    piezo_electric_sample_timer.start();
//    connection_test_sensorplate = angle_device_sensorplate.testConnection();
    
    if (test_mode == 1) {
        usb_serial.printf("Connection test sensorplate = %d\n", connection_test_sensorplate);
    }
    
    if (connection_test_sensorplate == 1) {
        piezo_electric_array[0] = piezo_electric_adc.readADC_SingleEnded(0);            // First PE readout.

        for (uint8_t k = 0; k < 4; ++k) {
            piezo_resistive_array[k] =    piezo_resistive_adc1.readADC_SingleEnded(k);  // First 4 PR readout.
        }
      
//        while(piezo_electric_sample_timer.read_us()<(1*(total_readout_cycle_time_us/5))) {} // Wait untill 20% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.

        piezo_electric_array[1] = piezo_electric_adc.readADC_SingleEnded(0);            // Second PE readout.

        for (uint8_t k = 0; k < 4; ++k) {
            piezo_resistive_array[k+4] =  piezo_resistive_adc2.readADC_SingleEnded(k);  // Last 4 PR readout.
        }

//        while(piezo_electric_sample_timer.read_us()<(2*(total_readout_cycle_time_us/5))) {} // Wait untill 40% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.

        piezo_electric_array[2] = piezo_electric_adc.readADC_SingleEnded(0);            // Third PE readout.

//        angle_device_sensorplate.getAccelero(accelerometer_sensorplate);                // Get accelerometer data.
//        angle = accelerometer_sensorplate[2]*100;
//        if(angle == 0) {
//            MPU6050 angle_device_sensorplate(PB_9, PB_8);
//            angle_device_sensorplate.getAccelero(accelerometer_sensorplate);
//            angle = accelerometer_sensorplate[2]*100;
//        }
//        angle_device_sensorplate.getGyro(gyroscope_sensorplate);                        // Get gyroscope data.
//
////        if (test_belt == 1) {
////            angle_device_reference_belt.getGyro(gyroscope_reference_belt);              // Get gyroscope data from Belt.
////            angle_device_reference_belt.getAccelero(accelerometer_reference_belt);      // Get accelerometer data from belt.
////        }
//        
//        if (connection_test_sensorplate == 1) {                                                     // If statement for sending serial information sensorplate data when connection test is active. 
//            // Receiving order sensor information: 3 accelero sensors & 3 gyroscope sensors from sensorplate; 3 accelero sensors & 3 gyroscope sensors from belt. Is splitted in two parts - part 2/2. 
//            pi_serial.printf("?,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2], accelerometer_reference_belt[0], accelerometer_reference_belt[1], accelerometer_reference_belt[2], gyroscope_reference_belt[0], gyroscope_reference_belt[1], gyroscope_reference_belt[2]);
//        } // binair print and convert in pi

//        while(piezo_electric_sample_timer.read_us()<(3*(total_readout_cycle_time_us/5))) {}  // Wait untill 60% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.

        piezo_electric_array[3] = piezo_electric_adc.readADC_SingleEnded(0);        // Fourth PE readout.
    }

//    timer_functions();

    batteryvoltage_current = batteryvoltage_last;
    powervoltage_current = powervoltage_last;
//    read_voltage();                                                                 // Read_voltage function to control alarm.
    
    if (test_mode == 1) {
        usb_serial.printf("Voltage = %d   ,   %d\n", batteryvoltage_current, powervoltage_current);
    }
    
//    uint32_t val = 0;
//    colour_select_indicating_LED_wall(LED_colour);                                  // Function to select colour.     
//    indicator_LEDs.update(generate, NUMBER_LED_FRONT, val);                         // Function to set the LED's which shines to the wall (indicating change patient position).
//    set_userinterface_LED();                                                        // Set LED's of user interface (LED's above buttons).

//    while(piezo_electric_sample_timer.read_us()<(4*(total_readout_cycle_time_us/5))) {}  // Wait untill 80% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.

//    if (test_mode == 1){                                                            // If statement for test purposal. 
//        usb_serial.printf("Angle device sensorplate = %d\n",angle_device_sensorplate.testConnection());
//    }
    
    if (connection_test_sensorplate == 1) {
        piezo_electric_array[4] = piezo_electric_adc.readADC_SingleEnded(0);         // Fifth PE readout.
    }

//    while(piezo_electric_sample_timer.read_us()<(4.25*(total_readout_cycle_time_us/5))) {}  // Wait untill 85% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.

    if (test_mode == 1) {
        usb_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4]); // print all to serial port
    }
    
    if (test_mode == 1) {                                                            // If statements for test purposal (untill * mark).
        usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms());
    }
//    if (test_pin == 1) {
//        test_mode = 1;
//        usb_serial.printf("%d\n",test_mode);
//    }
//    if (test_pin == 0) {
//        test_mode = 0;
//        usb_serial.printf("%d\n",test_mode);
//    }

    if (test_mode == 1) {
        usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms());
    }                                                                                
                                                                                    // * End of if statements for test purposal. 
}


int main() {
    //i2c_sensorplate_adc.frequency(400000);
//    connection_test_sensorplate = angle_device_sensorplate.testConnection();
//    pc.printf("Connection test sensorplate = %d\n", connection_test_sensorplate);
//    while(1) {
//        
//        piezo_electric_array[0] = piezo_electric_adc.readADC_SingleEnded(0);            // First PE readout.
//
//        for (uint8_t k = 0; k < 4; ++k) {
//            piezo_resistive_array[k] = piezo_resistive_adc1.readADC_SingleEnded(k);  // First 4 PR readout.
//        }
//
//        angle_device_sensorplate.getAccelero(accelerometer_sensorplate);                // Get accelerometer data.
//        angle = accelerometer_sensorplate[2]*100;
//        if(angle == 0) {
//            MPU6050 angle_device_sensorplate(PB_9, PB_8);
//            angle_device_sensorplate.getAccelero(accelerometer_sensorplate);
//            angle = accelerometer_sensorplate[2]*100;
//        }
//        angle_device_sensorplate.getGyro(gyroscope_sensorplate);                        // Get gyroscope data.
//        
//        pc.printf("?,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2], accelerometer_reference_belt[0], accelerometer_reference_belt[1], accelerometer_reference_belt[2], gyroscope_reference_belt[0], gyroscope_reference_belt[1], gyroscope_reference_belt[2]);
//        pc.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4]); // print all to serial port
//        wait(1);
//    }
    
    wait_ms(boot_delay_ms);                                                         // Wait to boot sensorplate first.
    i2c_sensorplate_adc.frequency(i2c__frequency);                                        // Set frequency for i2c connection to sensorplate (variable is declared in config part).
//    i2c_power_adc.frequency(i2c__frequency);                                              // Same as line 695, but now for ADC to read battery- en powervoltage. 
    usb_serial.baud(baud_rate);                                                     // Set serial USB connection baud rate (variable is declared in config part).
    pi_serial.baud(baud_rate);                                                      // Same as line 697, but now for serial PI connection.
    piezo_resistive_adc1.setGain(GAIN_TWOTHIRDS);                                   // Set ranges of ADC to +/-6.144V (end is marked with #):
    piezo_resistive_adc2.setGain(GAIN_TWOTHIRDS);                                   
    piezo_electric_adc.setGain(GAIN_TWOTHIRDS);                                     
//    adsAccu.setGain(GAIN_TWOTHIRDS);                                                // #) End of configuration ADC ranges.
    pi_serial.format(8, SerialBase::None, 1);                                       // Set serial communication line with PI. 

    //button_lock.fall(&trigger_lock);                                                // Interrupt for rising edge lock button.
//    button_lock.rise(&end_timer_lock_button);
//    button_reposition.fall(&reposition_button_triggered);
//    button_reposition.rise(&rise_reposition);
//    button_mute.fall(&mute_button_triggered);
//    button_new_patient.fall(&trigger_new_patient);                                  // New patient/calibration button rising event.
//    button_new_patient.rise(&activate_new_patient_function);                                    // Falling edge for calibration algorithm option.
//    delay_between_button_pressed.reset();                                           // Delaytimer reset en start.
//    delay_between_button_pressed.start();

//    set_intensity_LEDs();                                                                // Initialize intensity for user interface LED's and LED's shines to wall.  
//    lock_feedback_LED = control_LED_intensity;                                      // Lock LED initialization.

//    connection_test_sensorplate = angle_device_sensorplate.testConnection();
//    total_readout_cycle.attach_us(&read_adc, total_readout_cycle_time_us);          // Call function to start reading sensorplate and other functionalities.

    while (1) {
//        wait_us(total_readout_cycle_time_us+1);                                     // Wait indefinitely.
//        usb_serial.printf("%d\n", connection_test_sensorplate);
        piezo_electric_sample_timer.reset();                                            // Clock gebruiken o.i.d.?
        piezo_electric_sample_timer.start();
        connection_test_sensorplate = angle_device_sensorplate.testConnection();
        
        if (test_mode == 1) {
            usb_serial.printf("Connection test sensorplate = %d\n", connection_test_sensorplate);
        }
        
        if (connection_test_sensorplate == 1) {
            piezo_electric_array[0] = piezo_electric_adc.readADC_SingleEnded(0);            // First PE readout.
    
            for (uint8_t k = 0; k < 4; ++k) {
                piezo_resistive_array[k] =    piezo_resistive_adc1.readADC_SingleEnded(k);  // First 4 PR readout.
            }
          
    //        while(piezo_electric_sample_timer.read_us()<(1*(total_readout_cycle_time_us/5))) {} // Wait untill 20% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.
    
            piezo_electric_array[1] = piezo_electric_adc.readADC_SingleEnded(0);            // Second PE readout.
    
            for (uint8_t k = 0; k < 4; ++k) {
                piezo_resistive_array[k+4] =  piezo_resistive_adc2.readADC_SingleEnded(k);  // Last 4 PR readout.
            }
    
    //        while(piezo_electric_sample_timer.read_us()<(2*(total_readout_cycle_time_us/5))) {} // Wait untill 40% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.
    
            piezo_electric_array[2] = piezo_electric_adc.readADC_SingleEnded(0);            // Third PE readout.
    
    //        angle_device_sensorplate.getAccelero(accelerometer_sensorplate);                // Get accelerometer data.
    //        angle = accelerometer_sensorplate[2]*100;
    //        if(angle == 0) {
    //            MPU6050 angle_device_sensorplate(PB_9, PB_8);
    //            angle_device_sensorplate.getAccelero(accelerometer_sensorplate);
    //            angle = accelerometer_sensorplate[2]*100;
    //        }
    //        angle_device_sensorplate.getGyro(gyroscope_sensorplate);                        // Get gyroscope data.
    //
    ////        if (test_belt == 1) {
    ////            angle_device_reference_belt.getGyro(gyroscope_reference_belt);              // Get gyroscope data from Belt.
    ////            angle_device_reference_belt.getAccelero(accelerometer_reference_belt);      // Get accelerometer data from belt.
    ////        }
    //        
    //        if (connection_test_sensorplate == 1) {                                                     // If statement for sending serial information sensorplate data when connection test is active. 
    //            // Receiving order sensor information: 3 accelero sensors & 3 gyroscope sensors from sensorplate; 3 accelero sensors & 3 gyroscope sensors from belt. Is splitted in two parts - part 2/2. 
    //            pi_serial.printf("?,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2], accelerometer_reference_belt[0], accelerometer_reference_belt[1], accelerometer_reference_belt[2], gyroscope_reference_belt[0], gyroscope_reference_belt[1], gyroscope_reference_belt[2]);
    //        } // binair print and convert in pi
    
    //        while(piezo_electric_sample_timer.read_us()<(3*(total_readout_cycle_time_us/5))) {}  // Wait untill 60% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.
    
            piezo_electric_array[3] = piezo_electric_adc.readADC_SingleEnded(0);        // Fourth PE readout.
        }
    
    //    timer_functions();
    
        batteryvoltage_current = batteryvoltage_last;
        powervoltage_current = powervoltage_last;
    //    read_voltage();                                                                 // Read_voltage function to control alarm.
        
        if (test_mode == 1) {
            usb_serial.printf("Voltage = %d   ,   %d\n", batteryvoltage_current, powervoltage_current);
        }
        
    //    uint32_t val = 0;
    //    colour_select_indicating_LED_wall(LED_colour);                                  // Function to select colour.     
    //    indicator_LEDs.update(generate, NUMBER_LED_FRONT, val);                         // Function to set the LED's which shines to the wall (indicating change patient position).
    //    set_userinterface_LED();                                                        // Set LED's of user interface (LED's above buttons).
    
    //    while(piezo_electric_sample_timer.read_us()<(4*(total_readout_cycle_time_us/5))) {}  // Wait untill 80% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.
    
    //    if (test_mode == 1){                                                            // If statement for test purposal. 
    //        usb_serial.printf("Angle device sensorplate = %d\n",angle_device_sensorplate.testConnection());
    //    }
        
        if (connection_test_sensorplate == 1) {
            piezo_electric_array[4] = piezo_electric_adc.readADC_SingleEnded(0);         // Fifth PE readout.
        }
    
    //    while(piezo_electric_sample_timer.read_us()<(4.25*(total_readout_cycle_time_us/5))) {}  // Wait untill 85% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed.
    
        if (test_mode == 1) {
            usb_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4]); // print all to serial port
        }
        
        if (test_mode == 1) {                                                            // If statements for test purposal (untill * mark).
            usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms());
        }
    //    if (test_pin == 1) {
    //        test_mode = 1;
    //        usb_serial.printf("%d\n",test_mode);
    //    }
    //    if (test_pin == 0) {
    //        test_mode = 0;
    //        usb_serial.printf("%d\n",test_mode);
    //    }
    
        if (test_mode == 1) {
            usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms());
        }     
    }
}