Nucleo-transfer
Dependencies: ADS1015 MPU6050 PixelArray PixelArray-Nucleo mbed WS2813
Fork of Nucleo-transfer by
Sensorplate/main.cpp
- Committer:
- Ishy
- Date:
- 2018-03-09
- Revision:
- 60:2f7e82c6f916
- Parent:
- 58:8cfa736d8553
- Child:
- 64:065e2a679bad
- Child:
- 66:88c910cd4d9e
File content as of revision 60:2f7e82c6f916:
/********************* CODE INFORMATON ****************************** Date of creation: 30-09-2017 Authors: Danny Eldering & Ricardo Molenaar co-authors: Menno Gravemaker & Ishvara Lalta (c) Copyright by Momo Medical BV. Current version name: 2.1.4 Date of modification: 8-1-2018 Purpose of this file: Code for LPC1768 microcontroller for controlling buttons, LED's and communicate to PI Update ‘what’s new in this version?’: Sensorplate connection test changed from software to hardware check. ADC readout for accu deleted. Todo: -> Fix LED issue (yellow and red flashes at random moments); -> Optimize functions / improve readability; -> Split functions in seperate files?; -> Fix when sensorplate is not connected; -> Rule 570: if statement change to turn off LED's when power is plugged out (also related to rule 106). -> For the speaker two outputs of the uC are used. Add MOSFET with external supply and control these by uC? Source file: http://mbed.com/ Information files: (1) Flowchart: (2) Table serial communication: https://docs.google.com/spreadsheets/d/1kHlithHxtoMDGvbcdH8vwSw5W5ArxlwDPsyfra1dtQM/edit?usp=drive_web (3) Technical manual CU-/software: */ /************************ CONFIG ***********************************/ #include "mbed.h" // Include files and define parameters. #include "Adafruit_ADS1015.h" #include "MPU6050.h" #include "MPU6050_belt.h" #include "PixelArray.h" #include "WS2812.h" #define WS2812_BUF 3 #define NUM_COLORS 5 #define NUM_LEDS_PER_COLOR 3 #define NUMBER_LED_FRONT (3) #define ONE_COLOR InterruptIn button_lock(PC_1); // Input on intterupt base decleration. InterruptIn button_reposition(PC_3); InterruptIn button_mute(PC_2); InterruptIn button_new_patient(PC_0); DigitalIn intensity_code(PA_12); DigitalIn colour_code_1(PA_11); DigitalIn colour_code_0(PB_12); InterruptIn testpin_sensorplate(PC_6); DigitalOut LED_on_dev_board1(LED1); // Decleration of digital outputs. DigitalOut LED_on_dev_board2(LED2); DigitalOut LED_on_dev_board3(LED3); DigitalOut LED_on_dev_board4(LED4); DigitalOut speaker1(PC_12); // relatie aangeven! //neopixel::PixelArray indicator_LEDs(PA_7); PixelArray px(WS2812_BUF); //WS2812 ws(PA_7, WS2812_BUF, 3, 9, 9, 6); WS2812 ws(PA_7, WS2812_BUF, 3, 9, 9, 6); PwmOut lock_feedback_LED(PB_13); //(PB_1); // Declaration of pulse with modulation outputs. PwmOut mute_feedback_LED(PB_14); //(PB_15); PwmOut new_patient_feedback_LED(PB_15); //(PB_14); PwmOut reposition_feedback_LED(PB_1); //(PB_13); Timer button_lock_hold_timer; // Timer for time lock button should be pressed. Timer button_calibration_hold_timer; // Timer for calibration function (new patient holding 5 seconds). Timer delay_between_button_pressed; // Timer for time between two buttons (to prevent pressing buttons simultaneously). Timer speaker_timer; // Timer for speaker activation. Timer piezo_electric_sample_timer; // Timer for equally time-spaced samples. Timer Knight_Rider_Timer; /* The code underneath this commentbox has some fixed parameters for serial/ADC reading: -> The address for the angle_device_reference_belt is set to 0x68 in the file MPU6050_belt (rule number: 19); -> The adress for the angle_device_sensorplate is set to 0x69 in the file MPU6050.h (rule number: 19); -> This is because of using the same I2C line; -> For detailed information/questions about this item, please read the technical manual or contact: Ricardo Molenaar | ricardo.molenaar@gmail.com */ I2C i2c_sensorplate_adc(PB_9, PB_8); // I2C for sensorplate. MPU6050_belt angle_device_sensorplate(PB_9, PB_8); // i2c pins // i2c address hardcoded 0x68. MPU6050_belt angle_device_reference_belt(PB_9, PB_8); // i2c pins // i2c address hardcoded 0x69. Adafruit_ADS1115 piezo_resistive_adc1(&i2c_sensorplate_adc, 0x48); // i2c pins, i2c address. Adafruit_ADS1115 piezo_resistive_adc2(&i2c_sensorplate_adc, 0x49); // i2c pins, i2c address. Adafruit_ADS1115 piezo_electric_adc(&i2c_sensorplate_adc, 0x4B); // i2c pins, i2c address. Serial usb_serial(SERIAL_TX, SERIAL_RX); // tx, rx Serial pi_serial(PC_10, PC_11); // tx, rx Ticker total_readout_cycle; // Polling cycle. // End of commentbox related to the serial configuration/ADC reading components. int boot_delay_ms = 500; int total_readout_cycle_time_us = 100000; // Cycle time in us. int total_knight_rider_cycle_time_ms = 1000; int i2c__frequency = 400000; // I2C Frequency. int baud_rate = 115200; // Baud rate. short piezo_resistive_array[8] = {0,0,0,0,0,0,0,0}; // 8 PR sensors 1 time per cycle. short piezo_electric_array[6] = {0,0,0,0,0,0}; // 1 PE sensor 5 times per cycle. int angle = 0; // Accelerometer Z-axis. float accelerometer_sensorplate[3] = {0.0, 0.0, 0.0}; // Raw accelerometer data. float gyroscope_sensorplate[3]; // Raw gyroscope data. float accelerometer_reference_belt[3]; // Raw accelerometer data from belt. float gyroscope_reference_belt[3]; // Raw gyroscope data from belt. int colourbuf[NUM_COLORS] = {0xff0000,0x00ff00,0x0000ff,0xffa500,0xffffff}; // hex codes for the different colours char LED_colour = 'w'; // Variable to set LED colour (standard set to green, untill PI sends other character). Other possible colours: red ('r') & yellow ('y'). bool lock_state = false, lock_flag = 0, mute_state = 0, alarm = 0, calibration_flag = 0, intensity_select = 1; // Boolean variables for logging states. bool mute_flag = 0, new_patient_flag = 0, reposition_flag = 0, new_patient_lock_flag = 0, reposition_lock_flag = 0, mute_lock_flag; // Flag variables. bool speaker_state = 0, LED_red_state = 0, LED_yellow_state = 0, LED_green_state = 0, power_plug_state = 0; bool auto_lock_led_logged = 0, lock_is_logged = 0, speaker_logged = 0, LED_red_logged = 0, LED_yellow_logged = 0, LED_green_logged = 0, power_plug_logged = 0; // is toevoegen int locktime_ms = 2000; // Waittime for lock user interface in ms. int calibrationtime_ms = 2000; // Time to press new_patient button for calibration system. int calibration_flash = 0; // Variable for flash LED's to indicate calibration. int lock_flash = 0; int buttondelay_ms = 250; // Button delay in ms. Default: 750 int delay_lock_interface = 3000*60; // Delay for non using interface locktime. int speaker_active_ms = 750; // Time to iterate speaker on and off when alarm occurs. int alarm_voltage = 2400; // Needed voltage for alarm expressed as a digital 15 bit value (= 20% of max battery voltage). int LED_red_intensity = 0, LED_blue_intensity = 0, LED_green_intensity = 0; // Variables to set LED intensity. //short batteryvoltage_current = 0, batteryvoltage_last = 0, powervoltage_current, powervoltage_last; // Variables to manage batteryvoltage. Maybe change current to other? //const int digital_value_ADC_powervoltage_unplugged = 15000; // Digital value to set the indicating LEDs to wall blue (should be set off later). const in hoofdletters int intensity_day = 20, intensity_night = 5; // Intensity settings for LED's to wall. double intensity = 0.0, control_LED_intensity = 0.0; // Variable between 0 and 1 to set the intensity of the LED's above the buttons. Intensity change to smart name! int colour_code = 0b00; bool pi_active = false; /*************************** TEST ********************************/ // Verify algoritm function: for belt activation, set test_belt 1 (connect pin p20 to 3.3V). Timer test_timer; DigitalIn test_pin(PA_11, PullDown); // Variable to set if belt is used to test algorithm: bool test_belt = 0; // Set test mode on (log functions to pc serial: interrupts, LED intensity and serial messages): bool test_mode = 1; // Variable for connection test (should be changed): bool connection_test_sensorplate; /*************************** CODE ********************************/ void set_intensity_LEDs() // Function to set the intensity for the LED's. { if (intensity_select == 1) { intensity = intensity_day; } else { intensity = intensity_night; } control_LED_intensity = (intensity/100); if (test_mode == 1) { // If statement for test purposal LED_intensity values. if def gebruiken voor testmode // usb_serial.printf("Intensity LED's shines to wall = %f\n", intensity); // usb_serial.printf("Intensity LED's above buttons = %f\n", control_LED_intensity); } } void serial_read() // Function for serial read for select LED intensity and colour. { colour_code = (colour_code_1 << 1 | colour_code_0); if(colour_code != 0b00 && pi_active == false) { pi_active = true; } if(pi_active) { intensity_select = intensity_code; switch(colour_code) { case 0b11 : LED_colour = 'y'; break; case 0b10 : LED_colour = 'b'; break; case 0b01 : LED_colour = 'g'; break; case 0b00 : LED_colour = 'r'; break; default : LED_colour = 'w'; break; } } if (test_mode == 1) { // If statement for test purposal. // usb_serial.printf("Intensity_select = %d en LED_colour = %d\n", intensity_select, LED_colour); } if (test_mode == 0) { //usb_serial.printf("Message: %s\n", message); usb_serial.printf("Intensity_select = %d en LED_colour = %d\n", intensity_select, LED_colour); } } void serial_log() // Function for serial logging. See link to table with code declarations above in code. { if (reposition_flag == 1) { // If statement to control logging for reposition button. pi_serial.printf(">01\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">01\n"); } reposition_flag = 0; } if (reposition_lock_flag == 1) { // If statement to control logging for reposition button. pi_serial.printf(">10\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">10\n"); } reposition_lock_flag = 0; } if (new_patient_flag == 1) { // If statement to control logging for new patient button. pi_serial.printf(">02\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">02\n"); } new_patient_flag = 0; } if (new_patient_lock_flag == 1) { // If statement to control logging for new patient button. pi_serial.printf(">20\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">20\n"); } new_patient_lock_flag = 0; } // The new calibration button trigger if (mute_flag == 1) { // If statement to control logging for new patient button. pi_serial.printf(">03\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">03\n"); } mute_flag = 0; } // The new calibration button trigger if (mute_lock_flag == 1) { // If statement to control logging for new patient button. pi_serial.printf(">30\n"); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf(">30\n"); } mute_lock_flag = 0; } if (lock_flag == 1 && !lock_is_logged) { if (lock_state == 0) // If statement to control logging for lock button. pi_serial.printf(">04\n"); else if(lock_state == 1) pi_serial.printf(">40\n"); if (test_mode == 1) { if (lock_state == 0) // If statement to control logging for lock button. usb_serial.printf(">04\n"); else if(lock_state == 1) usb_serial.printf(">40\n"); // If statement for test purposal. } lock_is_logged = 1; } if (LED_red_logged != LED_red_state) { // If statement to control logging for LED_red. if (LED_red_state == 1) { pi_serial.printf("&01\n"); LED_red_logged = LED_red_state; if (test_mode == 1) { usb_serial.printf("&01\n"); } } if (LED_red_state == 0) { pi_serial.printf("&10\n"); LED_red_logged = LED_red_state; if (test_mode == 1) { usb_serial.printf("&10\n"); } } } if (LED_yellow_logged != LED_yellow_state) { // If statement to control logging for LED_yellow. if (LED_yellow_state == 1) { pi_serial.printf("&02\n"); LED_yellow_logged = LED_yellow_state; if (test_mode == 1) { usb_serial.printf("&02\n"); } } if (LED_yellow_state == 0) { pi_serial.printf("&20\n"); LED_yellow_logged = LED_yellow_state; if (test_mode == 1) { usb_serial.printf("&20\n"); } } } if (LED_green_logged != LED_green_state) { // If statement to control logging for LED_green. if (LED_green_state == 1) { pi_serial.printf("&03\n"); LED_green_logged = LED_green_state; if (test_mode == 1) { usb_serial.printf("&03\n"); } } if (LED_green_state == 0) { pi_serial.printf("&30\n"); LED_green_logged = LED_green_state; if (test_mode == 1) { usb_serial.printf("&30\n"); } } } if (speaker_logged != speaker_state) { // If statement to control logging for speaker. if (speaker_state == 1) { pi_serial.printf("&04\n"); speaker_logged = speaker_state; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("&04\n"); } } if (speaker_state == 0) { pi_serial.printf("&40\n"); speaker_logged = speaker_state; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("&40\n"); } } } // if (power_plug_logged != power_plug_state) { // If statement to control the logging for the state of the power plug. // if (power_plug_state == 1) { // pi_serial.printf("#08\n"); // // if (test_mode == 1) { // If statement for test purposal. // usb_serial.printf("#08\n"); // } // power_plug_logged = power_plug_state; // } // // if (power_plug_state == 0) { // pi_serial.printf("#80\n"); // // if (test_mode == 1) { // If statement for test purposal. // usb_serial.printf("#80\n"); // } // power_plug_logged = power_plug_state; // } // } if (connection_test_sensorplate == 1) { // If statement for sending serial information sensorplate data when connection test is active. // Receiving order sensor information: 8 resistive sensors, 5 electric readings. Is splitted in two parts - part 1/2. pi_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4], piezo_electric_array[5]); // print all to serial port if (test_mode == 1) { usb_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n", piezo_resistive_array[0], piezo_resistive_array[1], piezo_resistive_array[2], piezo_resistive_array[3], piezo_resistive_array[4], piezo_resistive_array[5], piezo_resistive_array[6], piezo_resistive_array[7], piezo_electric_array[0], piezo_electric_array[1], piezo_electric_array[2], piezo_electric_array[3], piezo_electric_array[4],piezo_electric_array[5]); // print all to serial port } } else { pi_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n",0,0,0,0,0,0,0,0,0,0,0,0,0,0); if (test_mode == 1) { usb_serial.printf("!,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,\n",0,0,0,0,0,0,0,0,0,0,0,0,0,0); // print all to serial port } } } void colour_select_indicating_LED_wall(char nLED_colour) // Function to select the colour for LED's to wall (values comes from algorithm). { set_intensity_LEDs(); // Call function set_intensity_LEDs to set the intensity for LED's to wall and above buttons. ws.setII(2.55*intensity); switch(nLED_colour) { case 'r' : px.SetAll(colourbuf[0]); LED_red_state = 1; LED_yellow_state = 0; break; case 'g' : px.SetAll(colourbuf[1]); LED_green_state = 1; LED_red_state = 0; break; case 'b' : px.SetAll(colourbuf[2]); break; case 'y' : px.SetAll(colourbuf[3]); LED_yellow_state = 1; LED_green_state = 0; break; default : px.SetAll(colourbuf[4]); } if (calibration_flash >= 1) { if ((calibration_flash % 2) == 0) { px.SetAll(colourbuf[2]); } else { ws.setII(0); } calibration_flash--; } //for (int z=WS2812_BUF; z >= 0 ; z--) { ws.write_offsets(px.getBuf(),0,0,0); //} } void trigger_lock() // If rising edge lock button is detected start locktimer. { if (test_mode == 1) { usb_serial.printf("Lock triggered.\n"); } if (lock_state == 0) pi_serial.printf(">44\n"); else if (lock_state == 1) pi_serial.printf(">00\n"); button_lock_hold_timer.reset(); button_lock_hold_timer.start(); delay_between_button_pressed.reset(); delay_between_button_pressed.start(); } void end_timer_lock_button() // End timer lock. { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Lock released.\n"); } lock_flag = 0; // Set lock_flag off. lock_is_logged = 0; button_lock_hold_timer.stop(); // Stop and reset holdtimer button_lock_hold_timer.reset(); } void reposition_button_triggered() { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. lock_flash = 10; } delay_between_button_pressed.reset(); delay_between_button_pressed.start(); if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Reposition triggered.\n"); LED_on_dev_board1 = !LED_on_dev_board1; } if (lock_state == 1) reposition_lock_flag = 1; else { reposition_flag = 1; reposition_feedback_LED = control_LED_intensity; pi_serial.printf("&05\n"); if(test_mode == 1) usb_serial.printf("&05\n"); } } void rise_reposition() // Interrupt for rising edge reposition function (deactivation; active low). { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Reposition released.\n"); } if (reposition_feedback_LED != 0) { pi_serial.printf("&50\n"); if(test_mode == 1) usb_serial.printf("&50\n"); } reposition_feedback_LED = 0; } //TODO rename to calibration void mute_button_triggered() { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. lock_flash = 10; } delay_between_button_pressed.reset(); delay_between_button_pressed.start(); button_calibration_hold_timer.reset(); // inline ? button_calibration_hold_timer.start(); if (lock_state == 1) { mute_lock_flag = 1; } else { mute_feedback_LED = control_LED_intensity; pi_serial.printf("&07\n"); if (test_mode == 1) usb_serial.printf("&07\n"); mute_flag = 1; } if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Calibration triggered\n"); LED_on_dev_board1 = !LED_on_dev_board1; } } void rise_mute() // Interrupt for rising edge reposition function (deactivation; active low). { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Calibration released.\n"); } if(lock_state == 0 && mute_feedback_LED != 0) { pi_serial.printf("&70\n"); if (test_mode == 1) usb_serial.printf("&70\n"); } mute_feedback_LED = 0; button_calibration_hold_timer.stop(); // Timer reset for calibration function of new patient button. button_calibration_hold_timer.reset(); if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { // Control statement for lock interface and delay for non using buttons at the same time. } else { if (calibration_flag == 0) { if (LED_on_dev_board1 == 0) { // If statement for test purposal. LED_on_dev_board1 = 1; } else { LED_on_dev_board1 = 0; } } else { calibration_flag = 0; } } } void trigger_new_patient() // Function to trigger hold timer for new patient and calibration function. { if (lock_state == 1 | (delay_between_button_pressed.read_ms() < buttondelay_ms)) { lock_flash = 10; } delay_between_button_pressed.reset(); delay_between_button_pressed.start(); if (lock_state == 1) new_patient_lock_flag = 1; else { new_patient_feedback_LED = control_LED_intensity; pi_serial.printf("&06\n"); new_patient_flag = 1; if(test_mode == 1) { usb_serial.printf("&06\n"); } } if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("New patient triggered.\n"); } } void activate_new_patient_function() // Timer calibration function. { if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("New patient released.\n"); } if (new_patient_feedback_LED != 0) { pi_serial.printf("&60\n"); if(test_mode) usb_serial.printf("&60\n"); } new_patient_feedback_LED = 0; } void timer_functions() // Function which contains statements using timers. { if (button_lock == 1) { button_lock_hold_timer.stop(); button_lock_hold_timer.reset(); } if ((button_lock_hold_timer.read_ms() > locktime_ms) && lock_flag == 0 && button_lock == 0) { // If statement for lock function. lock_flag = 1; LED_on_dev_board2 = !LED_on_dev_board2; lock_state = !lock_state; if (lock_state == 0) { // If statement to control lock feedback LED above button. lock_feedback_LED = control_LED_intensity; pi_serial.printf("&08\n"); if(test_mode == 1) usb_serial.printf("&08\n"); } else { lock_feedback_LED = 0; pi_serial.printf("&80\n"); if(test_mode == 1) usb_serial.printf("&80\n"); } } if (button_mute == 1) { button_calibration_hold_timer.stop(); button_calibration_hold_timer.reset(); } if ((button_calibration_hold_timer.read_ms() > calibrationtime_ms) && calibration_flag == 0 && button_mute == 0 && lock_state == 0) { // If statement for calibration algorithm. calibration_flag = 1; calibration_flash = 11; if (test_mode == 1) { // If statement for test purposal. usb_serial.printf("Calibrate triggered.\n"); } pi_serial.printf(">33\n"); } if (delay_between_button_pressed.read_ms() > delay_lock_interface) { // If buttons are not pressed for 3 minutes, set lock active. lock_state = 1; LED_on_dev_board2 = 1; lock_feedback_LED = 0; if (!auto_lock_led_logged) { pi_serial.printf("&80\n"); if(test_mode == 1) usb_serial.printf("&80\n"); auto_lock_led_logged = 1; } } else { auto_lock_led_logged = 0; } } void set_userinterface_LED() // Control functions for LED above buttons (added because of failures). { if (lock_state == 1) { } else { if (button_reposition == 0) { reposition_feedback_LED = control_LED_intensity; } else { reposition_feedback_LED = 0; } if (button_new_patient == 0) { new_patient_feedback_LED = control_LED_intensity; } else { new_patient_feedback_LED = 0; } } if (lock_flash >= 1 && lock_state == 1) { if ((lock_flash % 2) == 0) { lock_feedback_LED = control_LED_intensity; pi_serial.printf("&08\n"); if(test_mode == 1) usb_serial.printf("&08\n"); } else { lock_feedback_LED = 0; pi_serial.printf("&80\n"); if(test_mode == 1) usb_serial.printf("&80\n"); } lock_flash--; } else { lock_flash = 0; } } void sensorplate_detached() { if(piezo_electric_sample_timer.read_us() > total_readout_cycle_time_us) { NVIC_SystemReset(); } } int main() // Main function. inline function "Momo Init" bijvoorbeeld { serial_read(); ws.useII(WS2812::GLOBAL); // use global intensity scaling set_intensity_LEDs(); // Initialize intensity for user interface LED's and LED's shines to wall. colour_select_indicating_LED_wall(LED_colour); speaker1 = 1; wait_ms(boot_delay_ms); // Wait to boot sensorplate first. speaker1 = 0; i2c_sensorplate_adc.frequency(i2c__frequency); // Set frequency for i2c connection to sensorplate (variable is declared in config part). usb_serial.baud(baud_rate); // Set serial USB connection baud rate (variable is declared in config part). pi_serial.baud(baud_rate); // Same as line 697, but now for serial PI connection. piezo_resistive_adc1.setGain(GAIN_TWOTHIRDS); // Set ranges of ADC to +/-6.144V (end is marked with #): piezo_resistive_adc2.setGain(GAIN_TWOTHIRDS); piezo_electric_adc.setGain(GAIN_TWO); pi_serial.format(8, SerialBase::None, 1); // Set serial communication line with PI. testpin_sensorplate.mode(PullUp); button_lock.mode(PullUp); button_reposition.mode(PullUp); button_mute.mode(PullUp); button_new_patient.mode(PullUp); testpin_sensorplate.fall(&sensorplate_detached); button_lock.fall(&trigger_lock); // Interrupt for rising edge lock button. button_lock.rise(&end_timer_lock_button); button_reposition.fall(&reposition_button_triggered); button_reposition.rise(&rise_reposition); button_mute.fall(&mute_button_triggered); button_mute.rise(&rise_mute); button_new_patient.fall(&trigger_new_patient); // New patient/calibration button rising event. button_new_patient.rise(&activate_new_patient_function); // Falling edge for calibration algorithm option. __disable_irq(); while(!pi_active) { Knight_Rider_Timer.reset(); Knight_Rider_Timer.start(); reposition_feedback_LED = control_LED_intensity; new_patient_feedback_LED = 0; while(Knight_Rider_Timer.read_ms()<(1*(total_knight_rider_cycle_time_ms/8))) {} new_patient_feedback_LED = control_LED_intensity; while(Knight_Rider_Timer.read_ms()<(2*(total_knight_rider_cycle_time_ms/8))) {} mute_feedback_LED = control_LED_intensity; reposition_feedback_LED = 0; while(Knight_Rider_Timer.read_ms()<(3*(total_knight_rider_cycle_time_ms/8))) {} lock_feedback_LED = control_LED_intensity; new_patient_feedback_LED = 0; while(Knight_Rider_Timer.read_ms()<(4*(total_knight_rider_cycle_time_ms/8))) {} mute_feedback_LED = 0; while(Knight_Rider_Timer.read_ms()<(5*(total_knight_rider_cycle_time_ms/8))) {} mute_feedback_LED = control_LED_intensity; while(Knight_Rider_Timer.read_ms()<(6*(total_knight_rider_cycle_time_ms/8))) {} new_patient_feedback_LED = control_LED_intensity; lock_feedback_LED = 0; while(Knight_Rider_Timer.read_ms()<(7*(total_knight_rider_cycle_time_ms/8))) {} reposition_feedback_LED = control_LED_intensity; mute_feedback_LED = 0; serial_read(); colour_select_indicating_LED_wall(LED_colour); while(Knight_Rider_Timer.read_ms()<(8*(total_knight_rider_cycle_time_ms/8))) {} } __enable_irq(); delay_between_button_pressed.reset(); // Delaytimer reset en start. delay_between_button_pressed.start(); reposition_feedback_LED = 0; new_patient_feedback_LED = 0; mute_feedback_LED = 0; usb_serial.printf("Lock State: %d\n",lock_state); lock_feedback_LED = control_LED_intensity; // Lock LED initialization. while (1) { piezo_electric_sample_timer.reset(); // Clock gebruiken o.i.d.? piezo_electric_sample_timer.start(); connection_test_sensorplate = !testpin_sensorplate && pi_active; if (test_mode == 1) { // usb_serial.printf("Connection test sensorplate = %d\n", connection_test_sensorplate); } if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } if (connection_test_sensorplate == 1) { piezo_electric_array[0] = piezo_electric_adc.readADC_Differential_0_3(); // First PE readout. piezo_electric_array[3] = piezo_electric_adc.readADC_Differential_1_3(); // First PE readout. for (uint8_t k = 0; k < 4; ++k) { piezo_resistive_array[k] = piezo_resistive_adc1.readADC_SingleEnded(k); // First 4 PR readout. } if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } while(piezo_electric_sample_timer.read_us()<(1*(total_readout_cycle_time_us/3))) {} // Wait untill 20% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. piezo_electric_array[1] = piezo_electric_adc.readADC_Differential_0_3(); // Second PE readout. piezo_electric_array[4] = piezo_electric_adc.readADC_Differential_1_3(); // First PE readout. for (uint8_t k = 0; k < 4; ++k) { piezo_resistive_array[k+4] = piezo_resistive_adc2.readADC_SingleEnded(k); // Last 4 PR readout. } if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } while(piezo_electric_sample_timer.read_us()<(2*(total_readout_cycle_time_us/3))) {} // Wait untill 40% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. piezo_electric_array[2] = piezo_electric_adc.readADC_Differential_0_3(); // Third PE readout. piezo_electric_array[5] = piezo_electric_adc.readADC_Differential_1_3(); // First PE readout. angle_device_sensorplate.getAccelero(accelerometer_sensorplate); // Get accelerometer data. angle = accelerometer_sensorplate[2]*100; if(angle == 0) { MPU6050_belt angle_device_sensorplate(PB_9, PB_8); angle_device_sensorplate.getAccelero(accelerometer_sensorplate); angle = accelerometer_sensorplate[2]*100; } if((abs(accelerometer_sensorplate[0])+abs(accelerometer_sensorplate[1])+abs(accelerometer_sensorplate[2]))<= 6) { for(uint8_t k = 0; k < 3; ++k) { accelerometer_sensorplate[k]=accelerometer_sensorplate[k]*2; } } angle_device_sensorplate.getGyro(gyroscope_sensorplate); // Get gyroscope data. if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } if (test_belt == 1) { angle_device_reference_belt.getGyro(gyroscope_reference_belt); // Get gyroscope data from Belt. angle_device_reference_belt.getAccelero(accelerometer_reference_belt); // Get accelerometer data from belt. } if (connection_test_sensorplate == 1) { if (test_belt == 0) { // If statement for sending serial information sensorplate data when connection test is active. pi_serial.printf("?,%f,%f,%f,%f,%f,%f,0,0,0,0,0,0,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2]); } else { // Receiving order sensor information: 3 accelero sensors & 3 gyroscope sensors from sensorplate; 3 accelero sensors & 3 gyroscope sensors from belt. Is splitted in two parts - part 2/2. pi_serial.printf("?,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n", accelerometer_sensorplate[0], accelerometer_sensorplate[1], accelerometer_sensorplate[2], gyroscope_sensorplate[0], gyroscope_sensorplate[1], gyroscope_sensorplate[2], accelerometer_reference_belt[0], accelerometer_reference_belt[1], accelerometer_reference_belt[2], gyroscope_reference_belt[0], gyroscope_reference_belt[1], gyroscope_reference_belt[2]); } } // binair print and convert in pi else { pi_serial.printf("?,%f,%f,%f,%f,%f,%f,0,0,0,0,0,0,\n",0,0,0,0,0,0); } } if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } timer_functions(); if (test_mode == 1) { // usb_serial.printf("Loop time after timer_functions: %d ms\n",piezo_electric_sample_timer.read_ms()); } colour_select_indicating_LED_wall(LED_colour); // Function to select colour. set_userinterface_LED(); // Set LED's of user interface (LED's above buttons). if (test_mode == 1) { // If statement for test purposal. // usb_serial.printf("Angle device sensorplate = %d\n",angle_device_sensorplate.testConnection()); } if (connection_test_sensorplate == 1) { piezo_electric_array[4] = piezo_electric_adc.readADC_Differential_0_3(); // Fifth PE readout. } while(piezo_electric_sample_timer.read_us()<(4.25*(total_readout_cycle_time_us/5))) {} // Wait untill 85% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. if (test_mode == 1) { // usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } if (test_mode == 0) { // If statements for test purposal (untill * mark). // usb_serial.printf("Loop time pre serial: %d ms\n",piezo_electric_sample_timer.read_ms()); } serial_read(); // Call function for reading information from PI by serial connection. serial_log(); // Call function for logging information to PI by serial connection. if (test_mode == 0) { // If statements for test purposal (untill * mark). usb_serial.printf("Loop time: %d ms\n",piezo_electric_sample_timer.read_ms()); } while(piezo_electric_sample_timer.read_us()<(total_readout_cycle_time_us)) {} // Wait untill 100% of cycle. Energy efficiency is not fine in this situation, correct if low energy is needed. //if (test_pin == 1) { // test_mode = 1; // usb_serial.printf("%d\n",test_mode); // } // if (test_pin == 0) { // test_mode = 0; // usb_serial.printf("%d\n",test_mode); // } } }