Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MAX30101 MAX30003 MAX113XX_Pixi MAX30205 max32630fthr USBDevice
main.cpp
- Committer:
- Mahir Ozturk
- Date:
- 2018-04-20
- Revision:
- 7:2c9c8b6a28a7
- Parent:
- 6:aeb5a4c194c3
- Child:
- 10:dbeda3ffffb8
File content as of revision 7:2c9c8b6a28a7:
/*******************************************************************************
* Copyright (C) 2018 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include <config.h>
#include <mbed.h>
#include <events/mbed_events.h>
#include <rtos.h>
#include "ble/BLE.h"
#include "ble/Gap.h"
#include "max32630fthr.h"
#if defined(LIB_MAX30003)
#include "MAX30003.h"
#endif
#if defined(LIB_MAX30205)
#include "MAX30205.h"
#endif
#if defined(LIB_MAX30101)
#include "MAX30101.h"
#include "max30101_algo.h"
#endif
#if defined(LIB_MAX113XX_PIXI)
#include "MAX113XX_Pixi.h"
#include "MAX11301Hex.h"
#endif
/******************************************************************************/
MAX32630FTHR pegasus(MAX32630FTHR::VIO_3V3);
InterruptIn button(P2_3);
SPI spim2(SPI2_MOSI, SPI2_MISO, SPI2_SCK);
I2C i2c1(I2C1_SDA, I2C1_SCL); /* I2C bus, P3_4 = SDA, P3_5 = SCL */
/* LEDs */
DigitalOut rLED(LED1, LED_OFF);
DigitalOut gLED(LED2, LED_OFF);
DigitalOut bLED(LED3, LED_OFF);
/* Hardware serial port over DAPLink */
Serial daplink(USBTX, USBRX, 115200);
int aliveLedEventId;
/******************************************************************************/
const static char DEVICE_NAME[] = MAXIM_PLATFORM_NAME;
static const uint16_t uuid16_list[] = {0xFFFF}; //Custom UUID, FFFF is reserved for development
/* Set Up custom Characteristics */
UUID iotServiceUUID ("00001520-1d66-11e8-b467-0ed5f89f718b");
UUID uuidButtonPressedNotify("00001522-1d66-11e8-b467-0ed5f89f718b");
static uint8_t buttonPressedCount = 0;
GattCharacteristic gattCharButtonPressedNotify(uuidButtonPressedNotify, &buttonPressedCount, 1, 1,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
UUID uuidRGBLED("00001523-1d66-11e8-b467-0ed5f89f718b");
static uint8_t RGBLedInitValue[] = {LED_OFF, LED_OFF, LED_OFF};
ReadWriteArrayGattCharacteristic<uint8_t, sizeof(RGBLedInitValue)> gattCharRGBLed(uuidRGBLED, RGBLedInitValue);
#if defined(LIB_MAX30003_ECG)
UUID uuidECG("00001524-1d66-11e8-b467-0ed5f89f718b");
static int16_t ECGInitValue = 0xABCD;
ReadOnlyGattCharacteristic<int16_t> gattCharECG(uuidECG, &ECGInitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
#else
UUID uuidBPM("00001524-1d66-11e8-b467-0ed5f89f718b");
static float BPMInitValue = 0.0;
ReadOnlyGattCharacteristic<float> gattCharBPM(uuidBPM, &BPMInitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
#endif
#if defined(LIB_MAX30101)
UUID uuidHeartRate("00001525-1d66-11e8-b467-0ed5f89f718b");
static uint16_t HeartRateInitValue = 0xEEFF;
ReadOnlyGattCharacteristic<uint16_t> gattCharHeartRate(uuidHeartRate, &HeartRateInitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
UUID uuidSPO2("00001526-1d66-11e8-b467-0ed5f89f718b");
static uint16_t SPO2InitValue = 0xAABB;
ReadOnlyGattCharacteristic<uint16_t> gattCharSPO2(uuidSPO2, &SPO2InitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
#endif
#if defined(LIB_MAX113XX_PIXI)
UUID uuidADC("00001527-1d66-11e8-b467-0ed5f89f718b");
static float ADCInitValue = 0;
ReadOnlyGattCharacteristic<float> gattCharADC(uuidADC, &ADCInitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
#endif
#if defined(LIB_MAX30205)
UUID uuidTemp("00001528-1d66-11e8-b467-0ed5f89f718b");
static float TempInitValue = 26.5;
ReadOnlyGattCharacteristic<float> gattCharTemp(uuidTemp, &TempInitValue,
GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);
#endif
/* Set up custom service */
GattCharacteristic *characteristics[] = {&gattCharRGBLed, &gattCharButtonPressedNotify,
#if defined(LIB_MAX30003_ECG)
&gattCharECG,
#else
&gattCharBPM,
#endif
#if defined(LIB_MAX30205)
&gattCharTemp,
#endif
#if defined(LIB_MAX30101)
&gattCharHeartRate,
&gattCharSPO2,
#endif
#if defined(LIB_MAX113XX_PIXI)
&gattCharADC,
#endif
};
GattService iotService(iotServiceUUID, characteristics, sizeof(characteristics) / sizeof(GattCharacteristic *));
/******************************************************************************/
Mutex ble_mutex;
static EventQueue eventQueue(/* event count */ 10 * /* event size */ 32);
ble_error_t bleGattAttrWrite(GattAttribute::Handle_t handle, const uint8_t *value, uint16_t size)
{
BLE &ble = BLE::Instance();
ble_error_t ret;
ble_mutex.lock();
ret = ble.gattServer().write(handle, value, size);
ble_mutex.unlock();
return ret;
}
void updateButtonState(uint8_t newState) {
printf("Button pressed...\r\n");
bleGattAttrWrite(gattCharButtonPressedNotify.getValueHandle(), (uint8_t *)&newState, sizeof(uint8_t));
}
void buttonPressedCallback(void)
{
eventQueue.call(Callback<void(uint8_t)>(&updateButtonState), ++buttonPressedCount);
}
void disconnectionCallback(const Gap::DisconnectionCallbackParams_t *params)
{
printf("disc\r\n");
BLE::Instance().gap().startAdvertising(); // restart advertising
}
/* Connection */
void connectionCallback(const Gap::ConnectionCallbackParams_t *params)
{
printf("succ\r\n");
}
void blinkCallback(void)
{
gLED = !gLED;
}
void onBleInitError(BLE &ble, ble_error_t error)
{
/* Initialization error handling should go here */
}
/**
* This callback allows the LEDService to receive updates to the ledState Characteristic.
*
* @param[in] params
* Information about the characteristic being updated.
*/
void onDataWrittenCallback(const GattWriteCallbackParams *params)
{
if ((params->handle == gattCharRGBLed.getValueHandle()) && (params->len >= 3)) {
rLED = (params->data[0] != 0) ? LED_OFF : LED_ON;
gLED = (params->data[1] != 0) ? LED_OFF : LED_ON;
bLED = (params->data[2] != 0) ? LED_OFF : LED_ON;
}
}
void bleInitComplete(BLE::InitializationCompleteCallbackContext *params)
{
BLE& ble = params->ble;
ble_error_t error = params->error;
if (error != BLE_ERROR_NONE) {
/* In case of error, forward the error handling to onBleInitError */
onBleInitError(ble, error);
return;
}
/* Ensure that it is the default instance of BLE */
if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {
return;
}
ble.gap().onDisconnection(disconnectionCallback);
ble.gap().onConnection(connectionCallback);
ble.gattServer().onDataWritten(onDataWrittenCallback);
ble.gattServer().addService(iotService);
/* setup advertising */
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS, (uint8_t *)uuid16_list, sizeof(uuid16_list));
ble.gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME));
ble.gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
ble.gap().setAdvertisingInterval(1000); /* 1000ms. */
ble.gap().startAdvertising();
button.fall(buttonPressedCallback);
}
void scheduleBleEventsProcessing(BLE::OnEventsToProcessCallbackContext* context) {
BLE &ble = BLE::Instance();
eventQueue.call(Callback<void()>(&ble, &BLE::processEvents));
}
/******************************************************************************
************** MAX30205EVSYS *************************************************
******************************************************************************/
#if defined(LIB_MAX30205)
#define MAX30205_DATA_READ_PERIOD_MSEC 5000
MAX30205 max30205_temp_sensor(i2c1, 0x48); /* New MAX30205 on i2cBus */
Thread thread_max30205_reader;
bool max30205_config(MAX30205 &temp_sensor){
int rc = 0;
MAX30205::Configuration_u temp_cfg;
temp_cfg.all = 0;
temp_cfg.bits.shutdown = 1; // Shutdown mode
temp_cfg.bits.comp_int = 1; // Interrupt mode
temp_cfg.bits.os_polarity = 0; // Active low OS
temp_cfg.bits.fault_queue = 1; // Two faults for OS condition
temp_cfg.bits.data_format = 0; // Normal data format
temp_cfg.bits.timeout = 0; // I2C timeout reset enabled
temp_cfg.bits.one_shot = 0; // Start with one-shot = 0
rc = temp_sensor.writeConfiguration(temp_cfg); // Write config to MAX30205
return rc;
}
void max30205_reader_task()
{
int rc = max30205_config(max30205_temp_sensor); // Configure sensor, return 0 on success
MAX30205::Configuration_u temp_cfg;
uint16_t rawTemperatureRead;
float temperature;
temp_cfg.all = 0;
daplink.printf("Starting MAX30205 Temperature Demo Application...\r\n");
while (1) {
if (rc == 0) {
/* Send one-shot cmd to begin conversion */
temp_cfg.bits.one_shot = 1;
rc = max30205_temp_sensor.writeConfiguration(temp_cfg);
Thread::wait(50);
/* Read the temperature data */
rc = max30205_temp_sensor.readTemperature(rawTemperatureRead);
/* Convert temp data to Celsius */
temperature = max30205_temp_sensor.toCelsius(rawTemperatureRead);
bleGattAttrWrite(gattCharTemp.getValueHandle(), (uint8_t *)&temperature, sizeof(temperature));
daplink.printf("Temperature is %2.3f deg. C\r\n", temperature);
Thread::wait(MAX30205_BLE_NOTIFY_PERIOD_SEC * 1000);
} else {
daplink.printf("Something went wrong, check the I2C bus and power connections...\r\n");
return;
}
}
}
#endif
/******************************************************************************
************** MAX30101WING **************************************************
******************************************************************************/
#if defined(LIB_MAX30101)
#define MAX30101_IRQ_ASSERTED_ID 1
//variable for the algorithm
uint16_t sampleRate =100;
uint16_t compSpO2=1;
int16_t ir_ac_comp =0;
int16_t red_ac_comp=0;
int16_t green_ac_comp=0;
int16_t ir_ac_mag=0;
int16_t red_ac_mag=0;
int16_t green_ac_mag=0;
uint16_t HRbpm2=0;
uint16_t SpO2B=0;
uint16_t DRdy=0;
//declare large variables outside of main
uint32_t redData[500];//set array to max fifo size
uint32_t irData[500];//set array to max fifo size
uint32_t greenData[500];//set array to max fifo size
Thread thread_max30101_reader;
bool max30101_config(MAX30101 &op_sensor)
{
//Reset Device
MAX30101::ModeConfiguration_u modeConfig;
modeConfig.all = 0;
modeConfig.bits.reset = 1;
modeConfig.bits.mode = MAX30101::MultiLedMode; // Sets SPO2 Mode
int32_t rc = op_sensor.setModeConfiguration(modeConfig);
//enable MAX30101 interrupts
MAX30101::InterruptBitField_u ints;
if(rc == 0) {
ints.all = 0;
ints.bits.a_full = 1; // Enable FIFO almost full interrupt
ints.bits.ppg_rdy =1; //Enables an interrupt when a new sample is ready
rc = op_sensor.enableInterrupts(ints);
}
//configure FIFO
MAX30101::FIFO_Configuration_u fifoConfig;
if(rc == 0) {
fifoConfig.all = 0;
fifoConfig.bits.fifo_a_full = 10; // Max level of 17 samples
fifoConfig.bits.sample_average = MAX30101::AveragedSamples_0;// Average 0 samples
rc = op_sensor.setFIFOConfiguration(fifoConfig);
}
MAX30101::SpO2Configuration_u spo2Config;
if(rc == 0) {
spo2Config.all = 0; // clears register
spo2Config.bits.spo2_adc_range = 1; //sets resolution to 4096 nAfs
spo2Config.bits.spo2_sr = MAX30101::SR_100_Hz; // SpO2 SR = 100Hz
spo2Config.bits.led_pw = MAX30101::PW_3; // 18-bit ADC resolution ~400us
rc = op_sensor.setSpO2Configuration(spo2Config);
}
//Set time slots for LEDS
MAX30101::ModeControlReg_u multiLED;
if (rc == 0) {
//sets timing for control register 1
multiLED.bits.lo_slot=1;
multiLED.bits.hi_slot=2;
rc = op_sensor.setMultiLEDModeControl(MAX30101::ModeControlReg1, multiLED);
if (rc == 0) {
multiLED.bits.lo_slot=3;
multiLED.bits.hi_slot=0;
rc = op_sensor.setMultiLEDModeControl(MAX30101::ModeControlReg2, multiLED);
}
}
//Set LED drive currents
if(rc == 0) {
// Heart Rate only, 1 LED channel, Pulse amp. = ~7mA
rc = op_sensor.setLEDPulseAmplitude(MAX30101::LED1_PA, 0x24);
//To include SPO2, 2 LED channel, Pulse amp. ~7mA
if (rc == 0) {
rc = op_sensor.setLEDPulseAmplitude(MAX30101::LED2_PA, 0x24);
}
if (rc == 0) {
rc = op_sensor.setLEDPulseAmplitude(MAX30101::LED3_PA, 0x24);
}
}
//Set operating mode
modeConfig.all = 0;
if(rc == 0) {
modeConfig.bits.mode = MAX30101::MultiLedMode; // Sets multiLED mode
rc = op_sensor.setModeConfiguration(modeConfig);
}
return rc;
}
void max30101wing_pmic_config(I2C & i2c_bus, DigitalOut & pmic_en)
{
const uint8_t PMIC_ADRS = 0x54;
const uint8_t BBB_EXTRA_ADRS = 0x1C;
const uint8_t BOOST_VOLTAGE = 0x05;
char data_buff[] = {BBB_EXTRA_ADRS, 0x40}; //BBBExtra register address
//and data to enable passive
//pull down.
i2c_bus.write(PMIC_ADRS, data_buff,2); //write to BBBExtra register
data_buff[0] = BOOST_VOLTAGE;
data_buff[1] = 0x08; //Boost voltage configuration
//register followed by data
//to set voltage to 4.5V 1f
pmic_en = 0; //disables VLED 08
i2c_bus.write(PMIC_ADRS, data_buff,2); //write to BBBExtra register
pmic_en = 1; //enables VLED
}
/* Op Sensor FIFO nearly full callback */
void max30101_intr_callback()
{
thread_max30101_reader.signal_set(MAX30101_IRQ_ASSERTED_ID);
}
void max30101_reader_task()
{
InterruptIn op_sensor_int(P3_2); // Config P3_2 as int. in for
op_sensor_int.fall(max30101_intr_callback); // FIFO ready interrupt
DigitalOut VLED_EN(P3_3,0); //Enable for VLEDs
max30101wing_pmic_config(i2c1, VLED_EN);
MAX30101 op_sensor(i2c1); // Create new MAX30101 on i2cBus
int rc = max30101_config(op_sensor); // Config sensor, return 0 on success
MAX30101::InterruptBitField_u ints; // Read interrupt status to clear
rc = op_sensor.getInterruptStatus(ints); // power on interrupt
uint8_t fifoData[MAX30101::MAX_FIFO_BYTES];
uint16_t idx, readBytes;
int32_t opSample;
uint32_t sample;
uint16_t HRTemp;
uint16_t spo2Temp;
uint16_t lastValidHR = 0;
uint16_t lastValidSPO2 = 0;
int r=0; //counter for redData position
int ir=0; //counter for irData position
int g =0; //counter for greenData position
int c=0; //counter to print values
daplink.printf("Starting MAX30101 HeartRate / SPO2 Demo Application...\r\n");
daplink.printf("Please wait a few seconds while data is being collected.\r\n");
Timer bleNotifyTimer;
bleNotifyTimer.start();
while (1) {
if (rc == 0) {
/* Check if op_sensor interrupt asserted */
Thread::signal_wait(MAX30101_IRQ_ASSERTED_ID);
/* Read interrupt status to clear interrupt */
rc = op_sensor.getInterruptStatus(ints);
/* Confirms proper read prior to executing */
if (rc == 0) {
// Read FIFO
rc = op_sensor.readFIFO(MAX30101::ThreeLedChannels, fifoData, readBytes);
if (rc == 0) {
/* Convert read bytes into samples */
for (idx = 0; idx < readBytes; idx+=9) {
if (r >= 500 || ir >= 500 || g >= 500) {
daplink.printf("Overflow! r=%d ir=%d g=%d\r\n", r, ir, g);
break;
}
if (readBytes >= (idx + 8)) {
redData[r++] = ((fifoData[idx] << 16) | (fifoData[idx + 1] << 8) | (fifoData[idx + 2])) & 0x03FFFF;
irData[ir++] = ((fifoData[idx + 3] << 16) | (fifoData[idx + 4] << 8) | (fifoData[idx + 5])) & 0x03FFFF;
greenData[g++] = ((fifoData[idx + 6] << 16) | (fifoData[idx + 7] << 8) | (fifoData[idx + 8])) & 0x03FFFF;
}
}
if ((r >= 500) && (ir >= 500) && (g >= 500)) {/* checks to make sure there are 500 */
/* samples in data buffers */
/* runs the heart rate and SpO2 algorithm */
for (c = 0, HRTemp = 0; c < r; c++) {
HRSpO2Func(irData[c], redData[c],greenData[c], c,sampleRate, compSpO2,
&ir_ac_comp,&red_ac_comp, &green_ac_comp, &ir_ac_mag,&red_ac_mag,
&green_ac_mag, &HRbpm2,&SpO2B,&DRdy);
if (DRdy) {
HRTemp = HRbpm2;
spo2Temp = SpO2B;
}
}
/* If the above algorithm returns a valid heart rate on the last sample, it is printed */
if (DRdy == 1) {
daplink.printf("Heart Rate = %i\r\n",HRbpm2);
daplink.printf("SPO2 = %i\r\n",SpO2B);
lastValidHR = HRbpm2;
lastValidSPO2 = SpO2B;
} else if (HRTemp != 0) { /* if a valid heart was calculated at all, it is printed */
daplink.printf("Heart Rate = %i\r\n",HRTemp);
daplink.printf("SPO2 = %i\r\n",spo2Temp);
lastValidHR = HRTemp;
lastValidSPO2 = spo2Temp;
} else {
daplink.printf("Calculation failed...waiting for more samples...\r\n");
daplink.printf("Please keep your finger on the MAX30101 sensor with minimal movement.\r\n");
}
/* dump the first hundred samples after calculation */
for (c = 100; c < 500; c++) {
redData[c - 100] = redData[c];
irData[c - 100] = irData[c];
greenData[c - 100] = greenData[c];
}
/* reset counters */
r = 400;
ir = 400;
g = 400;
}
if (bleNotifyTimer.read_ms() >= (MAX30101_BLE_NOTIFY_PERIOD_SEC * 1000)) {
bleGattAttrWrite(gattCharHeartRate.getValueHandle(), (uint8_t *)&lastValidHR, sizeof(lastValidHR));
bleGattAttrWrite(gattCharSPO2.getValueHandle(), (uint8_t *)&lastValidSPO2, sizeof(lastValidSPO2));
bleNotifyTimer.reset();
}
}
}
} else { // If rc != 0, a communication error has occurred
daplink.printf("Something went wrong, "
"check the I2C bus or power connections... \r\n");
return;
}
}
}
#endif
/******************************************************************************
************** MAX30003WING (ECG) *********************************************
******************************************************************************/
#if defined(LIB_MAX30003_ECG)
#define MAX30003_IRQ_ASSERTED_SIGNAL_ID 1
MAX30003 max30003(spim2, SPI2_SS); /* MAX30003WING board */
Thread thread_max30003_reader;
void ecg_config(MAX30003& ecgAFE) {
// Reset ECG to clear registers
ecgAFE.writeRegister( MAX30003::SW_RST , 0);
// General config register setting
MAX30003::GeneralConfiguration_u CNFG_GEN_r;
CNFG_GEN_r.bits.en_ecg = 1; // Enable ECG channel
CNFG_GEN_r.bits.rbiasn = 1; // Enable resistive bias on negative input
CNFG_GEN_r.bits.rbiasp = 1; // Enable resistive bias on positive input
CNFG_GEN_r.bits.en_rbias = 1; // Enable resistive bias
CNFG_GEN_r.bits.imag = 2; // Current magnitude = 10nA
CNFG_GEN_r.bits.en_dcloff = 1; // Enable DC lead-off detection
ecgAFE.writeRegister( MAX30003::CNFG_GEN , CNFG_GEN_r.all);
// ECG Config register setting
MAX30003::ECGConfiguration_u CNFG_ECG_r;
CNFG_ECG_r.bits.dlpf = 1; // Digital LPF cutoff = 40Hz
CNFG_ECG_r.bits.dhpf = 1; // Digital HPF cutoff = 0.5Hz
CNFG_ECG_r.bits.gain = 3; // ECG gain = 160V/V
CNFG_ECG_r.bits.rate = 2; // Sample rate = 128 sps
ecgAFE.writeRegister( MAX30003::CNFG_ECG , CNFG_ECG_r.all);
//R-to-R configuration
MAX30003::RtoR1Configuration_u CNFG_RTOR_r;
CNFG_RTOR_r.bits.en_rtor = 1; // Enable R-to-R detection
ecgAFE.writeRegister( MAX30003::CNFG_RTOR1 , CNFG_RTOR_r.all);
//Manage interrupts register setting
MAX30003::ManageInterrupts_u MNG_INT_r;
MNG_INT_r.bits.efit = 0b00011; // Assert EINT w/ 4 unread samples
MNG_INT_r.bits.clr_rrint = 0b01; // Clear R-to-R on RTOR reg. read back
ecgAFE.writeRegister( MAX30003::MNGR_INT , MNG_INT_r.all);
//Enable interrupts register setting
MAX30003::EnableInterrupts_u EN_INT_r;
EN_INT_r.all = 0;
EN_INT_r.bits.en_eint = 1; // Enable EINT interrupt
EN_INT_r.bits.en_rrint = 0; // Disable R-to-R interrupt
EN_INT_r.bits.intb_type = 3; // Open-drain NMOS with internal pullup
ecgAFE.writeRegister( MAX30003::EN_INT , EN_INT_r.all);
//Dyanmic modes config
MAX30003::ManageDynamicModes_u MNG_DYN_r;
MNG_DYN_r.bits.fast = 0; // Fast recovery mode disabled
ecgAFE.writeRegister( MAX30003::MNGR_DYN , MNG_DYN_r.all);
// MUX Config
MAX30003::MuxConfiguration_u CNFG_MUX_r;
CNFG_MUX_r.bits.openn = 0; // Connect ECGN to AFE channel
CNFG_MUX_r.bits.openp = 0; // Connect ECGP to AFE channel
ecgAFE.writeRegister( MAX30003::CNFG_EMUX , CNFG_MUX_r.all);
return;
}
/* ECG FIFO nearly full callback */
//volatile bool ecgFIFOIntFlag = 0;
void ecgFIFO_callback() {
thread_max30003_reader.signal_set(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
//ecgFIFOIntFlag = 1;
}
void max30003_reader_task()
{
// Constants
const int EINT_STATUS_MASK = 1 << 23;
const int FIFO_OVF_MASK = 0x7;
const int FIFO_VALID_SAMPLE_MASK = 0x0;
const int FIFO_FAST_SAMPLE_MASK = 0x1;
const int ETAG_BITS_MASK = 0x7;
InterruptIn ecgFIFO_int(P5_4); // Config P5_4 as int. in for the
ecgFIFO_int.fall(&ecgFIFO_callback); // ecg FIFO almost full interrupt
SPI spiBus(SPI2_MOSI, SPI2_MISO, SPI2_SCK); // SPI bus, P5_1 = MOSI,
// P5_2 = MISO, P5_0 = SCK
MAX30003 ecgAFE(spiBus, P5_3); // New MAX30003 on spiBus, CS = P5_3
ecg_config(ecgAFE); // Config ECG
ecgAFE.writeRegister( MAX30003::SYNCH , 0);
uint32_t ecgFIFO, readECGSamples, idx, ETAG[32], status;
int16_t ecgSample[32];
daplink.printf("Starting MAX30003 ECG Demo Application...\r\n");
while (1) {
// Read back ECG samples from the FIFO
thread_max30003_reader.signal_wait(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
status = ecgAFE.readRegister( MAX30003::STATUS ); // Read the STATUS register
// Check if EINT interrupt asserted
if ( ( status & EINT_STATUS_MASK ) == EINT_STATUS_MASK ) {
readECGSamples = 0; // Reset sample counter
do {
ecgFIFO = ecgAFE.readRegister( MAX30003::ECG_FIFO ); // Read FIFO
ecgSample[readECGSamples] = ecgFIFO >> 8; // Isolate voltage data
ETAG[readECGSamples] = ( ecgFIFO >> 3 ) & ETAG_BITS_MASK; // Isolate ETAG
readECGSamples++; // Increment sample counter
// Check that sample is not last sample in FIFO
} while ( ETAG[readECGSamples-1] == FIFO_VALID_SAMPLE_MASK ||
ETAG[readECGSamples-1] == FIFO_FAST_SAMPLE_MASK );
// Check if FIFO has overflowed
if( ETAG[readECGSamples - 1] == FIFO_OVF_MASK ){
ecgAFE.writeRegister( MAX30003::FIFO_RST , 0); // Reset FIFO
rLED = 1;//notifies the user that an over flow occured
}
// Print results
for( idx = 0; idx < readECGSamples; idx++ ) {
daplink.printf("%6d\r\n", ecgSample[idx]);
bleGattAttrWrite(gattCharECG.getValueHandle(),
(uint8_t *)&ecgSample[idx], sizeof(ecgSample[idx]));
}
}
}
}
#endif
/******************************************************************************
************** MAX30003WING (BPM) *********************************************
*******************************************************************************/
#if defined(LIB_MAX30003)
#define MAX30003_IRQ_ASSERTED_SIGNAL_ID 1
MAX30003 max30003(spim2, SPI2_SS); /* MAX30003WING board */
Thread thread_max30003_reader;
/* ECG FIFO nearly full callback */
void ecgFIFO_callback()
{
thread_max30003_reader.signal_set(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
}
void ecg_config(MAX30003& ecgAFE)
{
// Reset ECG to clear registers
ecgAFE.writeRegister( MAX30003::SW_RST , 0);
// General config register setting
MAX30003::GeneralConfiguration_u CNFG_GEN_r;
CNFG_GEN_r.bits.en_ecg = 1; // Enable ECG channel
CNFG_GEN_r.bits.rbiasn = 1; // Enable resistive bias on negative input
CNFG_GEN_r.bits.rbiasp = 1; // Enable resistive bias on positive input
CNFG_GEN_r.bits.en_rbias = 1; // Enable resistive bias
CNFG_GEN_r.bits.imag = 2; // Current magnitude = 10nA
CNFG_GEN_r.bits.en_dcloff = 1; // Enable DC lead-off detection
ecgAFE.writeRegister( MAX30003::CNFG_GEN , CNFG_GEN_r.all);
// ECG Config register setting
MAX30003::ECGConfiguration_u CNFG_ECG_r;
CNFG_ECG_r.bits.dlpf = 1; // Digital LPF cutoff = 40Hz
CNFG_ECG_r.bits.dhpf = 1; // Digital HPF cutoff = 0.5Hz
CNFG_ECG_r.bits.gain = 3; // ECG gain = 160V/V
CNFG_ECG_r.bits.rate = 2; // Sample rate = 128 sps
ecgAFE.writeRegister( MAX30003::CNFG_ECG , CNFG_ECG_r.all);
//R-to-R configuration
MAX30003::RtoR1Configuration_u CNFG_RTOR_r;
CNFG_RTOR_r.bits.wndw = 0b0011; // WNDW = 96ms
CNFG_RTOR_r.bits.rgain = 0b1111; // Auto-scale gain
CNFG_RTOR_r.bits.pavg = 0b11; // 16-average
CNFG_RTOR_r.bits.ptsf = 0b0011; // PTSF = 4/16
CNFG_RTOR_r.bits.en_rtor = 1; // Enable R-to-R detection
ecgAFE.writeRegister( MAX30003::CNFG_RTOR1 , CNFG_RTOR_r.all);
//Manage interrupts register setting
MAX30003::ManageInterrupts_u MNG_INT_r;
MNG_INT_r.bits.efit = 0b00011; // Assert EINT w/ 4 unread samples
MNG_INT_r.bits.clr_rrint = 0b01; // Clear R-to-R on RTOR reg. read back
ecgAFE.writeRegister( MAX30003::MNGR_INT , MNG_INT_r.all);
//Enable interrupts register setting
MAX30003::EnableInterrupts_u EN_INT_r;
EN_INT_r.bits.en_eint = 1; // Enable EINT interrupt
EN_INT_r.bits.en_rrint = 1; // Enable R-to-R interrupt
EN_INT_r.bits.intb_type = 3; // Open-drain NMOS with internal pullup
ecgAFE.writeRegister( MAX30003::EN_INT , EN_INT_r.all);
//Dyanmic modes config
MAX30003::ManageDynamicModes_u MNG_DYN_r;
MNG_DYN_r.bits.fast = 0; // Fast recovery mode disabled
ecgAFE.writeRegister( MAX30003::MNGR_DYN , MNG_DYN_r.all);
// MUX Config
MAX30003::MuxConfiguration_u CNFG_MUX_r;
CNFG_MUX_r.bits.openn = 0; // Connect ECGN to AFE channel
CNFG_MUX_r.bits.openp = 0; // Connect ECGP to AFE channel
ecgAFE.writeRegister( MAX30003::CNFG_EMUX , CNFG_MUX_r.all);
return;
}
void max30003_reader_task()
{
// Constants
const int EINT_STATUS = 1 << 23;
const int RTOR_STATUS = 1 << 10;
const int RTOR_REG_OFFSET = 10;
const float RTOR_LSB_RES = 0.0078125f;
const int FIFO_OVF = 0x7;
const int FIFO_VALID_SAMPLE = 0x0;
const int FIFO_FAST_SAMPLE = 0x1;
const int ETAG_BITS = 0x7;
InterruptIn ecgFIFO_int(P5_4); // Config P5_4 as int. in for the
ecgFIFO_int.fall(&ecgFIFO_callback); // ecg FIFO almost full interrupt
ecg_config(max30003); // Config ECG
max30003.writeRegister( MAX30003::SYNCH , 0);
uint32_t ecgFIFO, RtoR, readECGSamples, idx, ETAG[32], status;
int16_t ecgSample[32];
float BPM;
Timer bleNotifyTimer;
bleNotifyTimer.start();
while (1) {
// Read back ECG samples from the FIFO
thread_max30003_reader.signal_wait(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
while (1) {
/* Read back ECG samples from the FIFO */
status = max30003.readRegister( MAX30003::STATUS ); // Read the STATUS register
if (status & (RTOR_STATUS | EINT_STATUS) == 0) {
break;
}
// Check if R-to-R interrupt asserted
if ((status & RTOR_STATUS) == RTOR_STATUS) {
daplink.printf("R-to-R Interrupt \r\n");
// Read RtoR register
RtoR = max30003.readRegister( MAX30003::RTOR ) >> RTOR_REG_OFFSET;
// Convert to BPM
BPM = 1.0f / ( RtoR * RTOR_LSB_RES / 60.0f );
daplink.printf("BPM: %.2f\r\n", BPM);
if (bleNotifyTimer.read_ms() >= (MAX30003_BLE_NOTIFY_PERIOD_SEC * 1000)) {
bleGattAttrWrite(gattCharBPM.getValueHandle(), (uint8_t *)&BPM, sizeof(BPM));
bleNotifyTimer.reset();
}
}
// Check if EINT interrupt asserted
if ((status & EINT_STATUS) == EINT_STATUS) {
readECGSamples = 0; // Reset sample counter
do {
ecgFIFO = max30003.readRegister( MAX30003::ECG_FIFO ); // Read FIFO
ecgSample[readECGSamples] = ecgFIFO >> 8; // Isolate voltage data
ETAG[readECGSamples] = ( ecgFIFO >> 3 ) & ETAG_BITS; // Isolate ETAG
readECGSamples++; // Increment sample counter
// Check that sample is not last sample in FIFO
} while (ETAG[readECGSamples-1] == FIFO_VALID_SAMPLE ||
ETAG[readECGSamples-1] == FIFO_FAST_SAMPLE);
// Check if FIFO has overflowed
if (ETAG[readECGSamples - 1] == FIFO_OVF){
max30003.writeRegister( MAX30003::FIFO_RST , 0); // Reset FIFO
rLED = 1;
}
}
}
}
}
#endif
/******************************************************************************
************** MAX11301WING ***************************************************
*******************************************************************************/
#if defined(LIB_MAX113XX_PIXI)
#define MAX113XX_DATA_READ_PERIOD_MSEC 2000
#define MAX113XX_I2C_ADDRESS 0x38
Thread thread_max11301_reader;
void max11301_reader_task()
{
uint16_t adcData;
float adcVoltage;
MAX113XX_I2C pixi(i2c1, MAX113XX_I2C::MAX11301, MAX113XX_I2C_ADDRESS, P5_5);
pixi.dacWrite(MAX113XX_Pixi::PORT0, 0x000); // Pixi PORT0 is -5V
pixi.dacWrite(MAX113XX_Pixi::PORT1, 0xFFF); // Pixi PORT1 is +5V
daplink.printf("Starting MAX11301 PIXI ADC Demo Application...\r\n");
while (1) {
pixi.singleEndedADCRead(MAX113XX_Pixi::PORT9, adcData); // Read value from PORT9
adcVoltage = -5 + 2.442e-3 * adcData; // Convert ADC val. to a voltage
daplink.printf("ADC Read is : %i,\tVoltage is %1.3f V \r\n", adcData, adcVoltage);
bleGattAttrWrite(gattCharADC.getValueHandle(), (uint8_t *)&adcVoltage, sizeof(adcVoltage));
Thread::wait(MAX113XX_PIXI_BLE_NOTIFY_PERIOD_SEC * 1000);
}
}
#endif
/******************************************************************************
******************************************************************************
******************************************************************************/
int main()
{
osStatus status;
rLED = LED_OFF; gLED = LED_OFF; bLED = LED_OFF; // red
aliveLedEventId = eventQueue.call_every(1000, blinkCallback);
daplink.printf("Initializing BLE service...\r\n");
BLE &ble = BLE::Instance();
ble.onEventsToProcess(scheduleBleEventsProcessing);
ble.init(bleInitComplete);
#if defined(LIB_MAX30205)
status = thread_max30205_reader.start(max30205_reader_task);
if (status != osOK) {
daplink.printf("Starting thread_max30205_reader thread failed(%d)!\r\n", status);
}
#endif
#if defined(LIB_MAX30101)
status = thread_max30101_reader.start(max30101_reader_task);
if (status != osOK) {
daplink.printf("Starting thread_max30205_reader thread failed(%d)!\r\n", status);
}
#endif
#if defined(LIB_MAX30003)
status = thread_max30003_reader.start(max30003_reader_task);
if (status != osOK) {
daplink.printf("Starting thread_max30205_reader thread failed(%d)!\r\n", status);
}
#endif
#if defined(LIB_MAX113XX_PIXI)
status = thread_max11301_reader.start(max11301_reader_task);
if (status != osOK) {
daplink.printf("Starting thread_max30205_reader thread failed(%d)!\r\n", status);
}
#endif
eventQueue.dispatch_forever();
return 0;
}