Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: max32630fthr Adafruit_FeatherOLED USBDevice
Interfaces/SensorComm/EcgComm/EcgComm.cpp
- Committer:
- gmehmet
- Date:
- 2019-04-10
- Revision:
- 1:f60eafbf009a
File content as of revision 1:f60eafbf009a:
/***************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
****************************************************************************
*/
#include "EcgComm.h"
#include "EcgComm_Defines.h"
#include <ctype.h>
#include "CRC8.h"
#include "Peripherals.h"
#include "utils.h"
#include "MAX30001_Helper.h"
#include "BLE_ICARUS.h"
#define ECG_REG_COUNT 64
const char *cmd_tbl_ecg[] = {
"int",
"get_format ecg 1",
"get_format ecg 2",
"read ecg 1", //ecg
"read ecg 2", //android app data streaming mode
"get_reg ecg",
"set_reg ecg",
"dump_reg ecg",
"set_cfg ecg invert"
};
typedef union {
struct {
uint32_t ptag :3;
uint32_t etag :3;
uint32_t ecg_data :16;
uint32_t reserved :8;
};
int32_t ecg_data_whole;
} ecg_data_parser;
EcgComm::EcgComm(USBSerial* USB):
SensorComm("ecg", true)
{
m_USB = USB;
}
void EcgComm::stop()
{
int ret;
comm_mutex.lock();
data_report_mode = 0;
comm_mutex.unlock();
sample_count = 0;
ret = sensor->sensor_enable(0);
if (ret < 0) {
pr_err("sensor_enable failed. ret: %d", ret);
}
}
bool EcgComm::parse_command(const char* cmd)
{
int i;
int ret = EXIT_SUCCESS;
uint8_t reg_addr;
uint32_t reg_val = 0;
bool recognizedCmd = false;
uint8_t params[32];
char charbuf[768];
int data_len = 0;
addr_val_pair reg_vals[ECG_REG_COUNT];
int comma = 0;
if (sensor == NULL) {
pr_err("sensor object is invalid!");
return false;
}
for (i = 0; i < NUM_CMDS; i++) {
if (starts_with(cmd, cmd_tbl_ecg[i])) {
cmd_state_t user_cmd = (cmd_state_t)i;
recognizedCmd = true;
switch (user_cmd) {
case get_format_1:
if(AsciiEn)
{
m_USB->printf("\r\n%s format=smpleCnt,ecg err=0\r\n",
cmd);
}
else
{
if(BLE::Instance().gap().getState().connected) {
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s enc=bin cs=1 format={smpleCnt,8},{rtor,14},{rtorbpm,8},"
"{pTag.0,3},{eTag.0,3},{ecg.0,18},"
"{pTag.1,3},{eTag.1,3},{ecg.1,18},"
"{pTag.2,3},{eTag.2,3},{ecg.2,18},"
"{pTag.3,3},{eTag.3,3},{ecg.3,18} err=0\r\n", cmd);
} else {
m_USB->printf("\r\n%s enc=bin cs=1 format={smpleCnt,8},{pTag,3},{eTag,3},"
"{ecg,18},{rtor,14},{rtorbpm,8} err=0\r\n", cmd);
}
}
break;
case get_format_2:
if(AsciiEn)
{
m_USB->printf("\r\n%s format=smpleCnt,rtor err=0\r\n",
cmd);
}
else
{
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s enc=bin cs=1 format={smplCnt,8},{rtor,15} err=0\r\n",
cmd);
m_USB->printf(charbuf);
}
break;
case ecg_mode:
comm_mutex.lock();
data_report_mode = ecg_mode;
comm_mutex.unlock();
ret = sensor->sensor_enable(1);
if (ret < 0) {
pr_err("sensor_enable failed. ret: %d", ret);
}
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
break;
case ecg_mode_2:
comm_mutex.lock();
data_report_mode = ecg_mode_2;
comm_mutex.unlock();
ret = ((MAX30001_Helper*)sensor)->Max30001Helper_SetECGSampleRate(MAX30001_Helper::k128SPS);
ret |= sensor->sensor_enable(1);
if (ret < 0) {
pr_err("sensor_enable failed. ret: %d", ret);
}
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
break;
case get_reg:
reg_addr = 0;
reg_val = 0;
ret = parse_get_reg_cmd(cmd, sensor_type, ®_addr);
if (!ret) {
ret = sensor->MS_max30001readRegister(reg_addr, ®_val);
if(ret == 0) {
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s reg_val=%08X err=%d\r\n", cmd, reg_val, ret);
m_USB->printf(charbuf);
}else {
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
}
}else{
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
}
break;
case set_reg:
reg_addr = 0;
reg_val = 0;
ret = parse_set_reg_cmd(cmd, sensor_type, ®_addr, ®_val);
if (!ret) {
ret = sensor->MS_max30001writeRegister(reg_addr, reg_val);
if(ret == 0) {
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
}else {
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
}
}else{
data_len = snprintf(charbuf, sizeof(charbuf),
"\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
}
break;
case dump_regs:
for (int j = 0; j < ECG_REG_COUNT; j++) {
reg_vals[j].addr = 0xFF;
}
ret = sensor->dump_registers(reg_vals);
if (ret) {
m_USB->printf("\r\n%s err=%d\n", cmd, ret);
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\n", cmd, ret);
}
else {
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s reg_val=", cmd);
comma = false;
for (int reg = 0; reg < ECG_REG_COUNT; reg++) {
if(reg_vals[reg].addr == 0xFF)
break;
if (comma) {
data_len += snprintf(charbuf + data_len,
sizeof(charbuf) - data_len - 1, ",");
}
data_len += snprintf(charbuf + data_len,
sizeof(charbuf) - data_len - 1,
"{%X,%X}", (unsigned int)reg_vals[reg].addr, (unsigned int)reg_vals[reg].val);
comma = 1;
}
data_len += snprintf(charbuf + data_len, sizeof(charbuf) - data_len - 1, " err=0\r\n");
m_USB->printf(charbuf);
}
break;
case InterruptInit:
ret = ECG_Parse_Parameters_Single((cmd + strlen(cmd_tbl_ecg[i])), params, kInterruptParametersCount);
if(ret != 0){
printf("ECG_Parse_Parameters_Single has failed\n");
break;
}
ret = sensor->MS_max30001_INT_assignment(params[0], params[1], params[2],
params[3], params[4], params[5],
params[6], params[7], params[8],
params[9], params[10], params[11],
params[12], params[13], params[14],
params[15], params[16]);
m_USB->printf("\r\n%s err=%d\r\n", cmd, ret == 0 ? 0 : -255);
break;
case set_cfg_ecg_invert: {
ret = ((MAX30001_Helper*)sensor)->MAX30001_Helper_Invert_Waveform();
m_USB->printf("\r\n%s err=%d\r\n", cmd, ret);
} break;
default:
break;
}
if (BLE::Instance().gap().getState().connected) {
BLE_Icarus_AddtoQueue((uint8_t *)charbuf, (int32_t)sizeof(charbuf), data_len);
}
}
}
return recognizedCmd;
}
int EcgComm::data_report_execute(char* buf, int size)
{
int ret = 0;
int16_t data_len = 0;
uint8_t tmp_report_mode;
ecg_sensor_report sensor_report = {0};
ecg_sensor_report sensor_report_2 = {0};
ecg_sensor_report sensor_report_3 = {0};
ecg_sensor_report sensor_report_4 = {0};
ecg1_comm_packet* data_packet;
ecg_comm_packet_ble* data_packet_ble;
if(!is_enabled())
return 0;
if (sensor == NULL)
return 0;
comm_mutex.lock();
tmp_report_mode = data_report_mode;
comm_mutex.unlock();
if(((MAX30001_Helper*)sensor)->Max30001Helper_getInterruptStatus()) {
((MAX30001_Helper*)sensor)->Max30001Helper_max30001_int_handler();
((MAX30001_Helper*)sensor)->Max30001Helper_setInterruptStatus(false);
}
switch(tmp_report_mode) {
case ecg_mode:
case ecg_mode_2:
if(AsciiEn){
ret = ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report);
if (ret < 0)
return 0;
data_len = snprintf(buf, size - 1,
"%lu,%ld,%d,%d,%.3f,%.3f,%.3f\r\n",
sample_count++,
sensor_report.ecg,
sensor_report.rtor,
sensor_report.rtor_bpm,
sensor_report.x,
sensor_report.y,
sensor_report.z);
}
else{
if((m_sensorcomm_ble_interface_exists_ | m_sensorcomm_flash_rec_started_) && (((MAX30001_Helper*)sensor)->MAX30001_Helper_Queue_Size() >= m_ecg_ble_packet_count_)) {
ret = ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report);
ret |= ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report_2);
ret |= ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report_3);
ret |= ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report_4);
if (ret < 0)
return 0;
data_packet_ble = (ecg_comm_packet_ble*)buf;
data_packet_ble->start_byte = 0xAA;
data_packet_ble->sample_count = sample_count;
sample_count += m_ecg_ble_packet_count_;
data_packet_ble->ecg = sensor_report.ecg;
data_packet_ble->ecg_2 = sensor_report_2.ecg;
data_packet_ble->ecg_3 = sensor_report_3.ecg;
data_packet_ble->ecg_4 = sensor_report_4.ecg;
data_packet_ble->rtor = (sensor_report.rtor | sensor_report_2.rtor | sensor_report_3.rtor | sensor_report_4.rtor);
data_packet_ble->rtor_bpm = (sensor_report.rtor_bpm | sensor_report_2.rtor_bpm | sensor_report_3.rtor_bpm | sensor_report_4.rtor_bpm);
data_packet_ble->crc8 = crc8((uint8_t*)data_packet_ble, sizeof(*data_packet_ble) - sizeof(uint8_t));
data_len = sizeof(*data_packet_ble);
} else if((m_sensorcomm_ble_interface_exists_ == 0) & (m_sensorcomm_flash_rec_started_ == 0)) {
ret = ((MAX30001_Helper*)sensor)->get_sensor_report(sensor_report);
if (ret < 0)
return 0;
data_packet = (ecg1_comm_packet*)buf;
data_packet->start_byte = 0xAA;
data_packet->sample_count = sample_count++;
data_packet->ecg = sensor_report.ecg;
data_packet->rtor = sensor_report.rtor;
data_packet->rtor_bpm = sensor_report.rtor_bpm;
data_packet->crc8 = crc8((uint8_t*)data_packet, sizeof(*data_packet) - sizeof(uint8_t));
data_len = sizeof(*data_packet);
}
}
break;
default:
break;
}
if (data_len < 0) {
pr_err("snprintf buf failed");
} else if (data_len > size) {
pr_err("buffer is insufficient to hold data");
}
return data_len;
}
// this function parses the parameters for max30001_ECG_InitStart function
int EcgComm::ECG_Parse_Parameters(char *substring, uint8_t parameters[], uint8_t parameters_len){
char *pt_ch = substring;
if(strlen(pt_ch) < (parameters_len*2)){
pr_err("Wrong number of params");
return -1;
}else{
if(ConvertHexString2Decimal(pt_ch, parameters, parameters_len) != 0)
return -1;
for(int i = 0; i < parameters_len; ++i){
printf("%d\n", parameters[i]);
}
}
return 0;
}
// this function parses the parameters for max30001_ECG_InitStart function for single digits
int EcgComm::ECG_Parse_Parameters_Single(const char *substring, uint8_t parameters[], uint8_t parameters_len){
const char *pt_ch = substring;
int i = 0;
unsigned char num_found = 0;
if(strlen(pt_ch) < (parameters_len)){
pr_err("Wrong number of params");
return -1;
}else{
for(i = 0; i < parameters_len; ++i){
if(getHexDigit(pt_ch[i], &num_found)){
parameters[i] = num_found;
}
else{
pr_err("parsing of parameters failed");
return -1;
}
}
for(i = 0; i < parameters_len; ++i){
printf("%d\n", parameters[i]);
}
}
return 0;
}
char getHexDigit(char ch_hex, uint8_t *bt_hex)
{
if (ch_hex >= '0' && ch_hex <= '9')
*bt_hex = ch_hex - '0';
else if (ch_hex >= 'A' && ch_hex <= 'F')
*bt_hex = ch_hex - 'A' + 10;
else if (ch_hex >= 'a' && ch_hex <= 'f')
*bt_hex = ch_hex - 'a' + 10;
else
return false;
return true;
}
int ConvertHexString2Decimal(char *pt_ch, uint8_t *bt_hex, int len){
if(strlen(pt_ch) < ((uint32_t)len * 2))
return -1;
for(int i = 0; i < len; ++i){
uint8_t hex_digit;
// Get most significant hex digit
if (!getHexDigit(*(pt_ch++), &hex_digit))
return -1;
else
{
hex_digit <<= 4;
bt_hex[i] = hex_digit;
}
// Get least significant digit
if (!getHexDigit(*(pt_ch++), &hex_digit))
return -1;
else{
bt_hex[i] |= hex_digit;
}
}
return 0;
}