DeepCover Embedded Security in IoT: Public-key Secured Data Paths

Dependencies:   MaximInterface

The MAXREFDES155# is an internet-of-things (IoT) embedded-security reference design, built to authenticate and control a sensing node using elliptic-curve-based public-key cryptography with control and notification from a web server.

The hardware includes an ARM® mbed™ shield and attached sensor endpoint. The shield contains a DS2476 DeepCover® ECDSA/SHA-2 coprocessor, Wifi communication, LCD push-button controls, and status LEDs. The sensor endpoint is attached to the shield using a 300mm cable and contains a DS28C36 DeepCover ECDSA/SHA-2 authenticator, IR-thermal sensor, and aiming laser for the IR sensor. The MAXREFDES155# is equipped with a standard Arduino® form-factor shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The combination of these two devices represent an IoT device. Communication to the web server is accomplished with the shield Wifi circuitry. Communication from the shield to the attached sensor module is accomplished over I2C . The sensor module represents an IoT endpoint that generates small data with a requirement for message authenticity/integrity and secure on/off operational control.

The design is hierarchical with each mbed platform and shield communicating data from the sensor node to a web server that maintains a centralized log and dispatches notifications as necessary. The simplicity of this design enables rapid integration into any star-topology IoT network to provide security with the low overhead and cost provided by the ECDSA-P256 asymmetric-key and SHA-256 symmetric-key algorithms.

More information about the MAXREFDES155# is available on the Maxim Integrated website.

xternal/sha256_software.c

Committer:
IanBenzMaxim
Date:
2019-12-03
Revision:
18:c2631e985780
Parent:
16:a004191a79ab

File content as of revision 18:c2631e985780:

/*******************************************************************************
* Copyright (C) 2013 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated 
* Products, Inc. shall not be used except as stated in the Maxim Integrated 
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all 
* ownership rights.
*******************************************************************************
*/

#include <string.h>

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;

#define SHA_256_INITIAL_LENGTH    8

#define TRUE 1
#define FALSE 0

// General Purpose SHA-256 Function
void ComputeSHA256(uchar* message, short length, ushort skipconst, ushort reverse, uchar* digest);

// Utility Functions
static ulong sha_ch(ulong x, ulong y, ulong z);
static ulong sha_maj(ulong x, ulong y, ulong z);
static ulong sha_rotr_32(ulong val, ushort r);
static ulong sha_shr_32(ulong val, ushort r);
static ulong sha_bigsigma256_0(ulong x);
static ulong sha_littlesigma256_0(ulong x);
static ulong sha_littlesigma256_1(ulong x);
static void sha_copy32(const ulong* p1, ulong* p2, ushort length);
static void sha_copyWordsToBytes32(const ulong* input, uchar* output, ushort numwords);
static void sha_writeResult(ushort reverse, uchar* outpointer, const ulong* H32);
static ulong sha_getW(int index, ulong* W32);
static void sha_prepareSchedule(const uchar* message, ulong* W32);
static void sha256_hashblock(const uchar* message, ushort lastblock, ulong* H32);

// External Debug print  
#ifdef DEBUG_SHA
extern int dprintf(char *format, ...);
#endif

// SHA-256 globals values
static const ulong SHA_256_Initial[] = 
{
   0x6a09e667,
   0xbb67ae85,
   0x3c6ef372,
   0xa54ff53a,
   0x510e527f,
   0x9b05688c,
   0x1f83d9ab,
   0x5be0cd19
};

static const ulong SHA_CONSTANTS[] =  
{
  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
  0xca273ece, 0xd186b8c7, 0xeada7dd6, 0xf57d4f7f, 0x06f067aa, 0x0a637dc5, 0x113f9804, 0x1b710b35,
  0x28db77f5, 0x32caab7b, 0x3c9ebe0a, 0x431d67c4, 0x4cc5d4be, 0x597f299c, 0x5fcb6fab, 0x6c44198c
};

//-----------------------------------------------------------------------------
// ------ General Purpose SHA-256 Function
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
/// Computes SHA-256 given the data block 'message' with no padding. 
/// The result is returned in 'digest'.   
///
/// @param[in] message
/// Buffer containing the message to hash 
/// @param[in] skipconst
/// Flag to skip adding constant on last block (skipconst=1) (Required for Maxim devices)
/// @param[in] reverse
/// Flag to reverse order of digest (reverse=1, MSWord first, LSByte first) (Required for Maxim devices)
/// @param[out] digest
/// Pointer to result hash digest in byte order used by Maxim devices
//
void ComputeSHA256(uchar* message, short length, ushort skipconst, ushort reverse, uchar* digest)
{
   const ushort wordsize = 32;
    
   ushort bytes_per_block;
   ushort nonpaddedlength;
   ushort numblocks;
   ushort i,j;
   ulong bitlength;
   ushort markerwritten;
   ushort lastblock;
   
   uchar workbuffer[128];
   ulong H32[8];                                 // last SHA result variables

  #ifdef DEBUG_SHA
  dprintf("\nSHA-256 INPUT:\n");
  for (i = 0; i < length; i+=4)
  {
     for (j = 0; j < 4; j++)
        dprintf("%02X ",message[i+j]);
     dprintf("\n");
  }
  dprintf("\n");
  #endif

   // if wordsize is 32 bits, we need 512 bit blocks.  else 1024 bit blocks.
   // that means 16 words are in one message.
   bytes_per_block = 16 * (wordsize / 8);
   // 1 byte for the '80' that follows the message, 8 or 16 bytes of length
   nonpaddedlength = length + 1 + (wordsize/4);
   numblocks = nonpaddedlength / bytes_per_block;
   if ((nonpaddedlength % bytes_per_block) != 0) 
   {
      // then there is some remainder we need to pad
      numblocks++;
   }

   sha_copy32(SHA_256_Initial, H32, SHA_256_INITIAL_LENGTH); 

   bitlength = 8 * length;
   markerwritten = 0;
   // 'length' is our number of bytes remaining.
   for (i = 0; i < numblocks; i++)
   {
      if (length > bytes_per_block)
      {
         memcpy(workbuffer, message, bytes_per_block);
         length -= bytes_per_block;
      }
      else if (length==bytes_per_block)
      {
         memcpy(workbuffer, message, length);
         length = 0;
      }
      else // length is less than number of bytes in a block
      {
         memcpy(workbuffer, message, length);
         // message is now used for temporary space
         message = workbuffer + length;     
         if (markerwritten == 0)
         {
            *message++ = 0x80;
            length++;
         }

         while (length < bytes_per_block)
         {
            // this loop is inserting padding, in this case all zeroes
            *message++ = 0;
            length++;
         }
         length = 0;
         // signify that we have already written the 80h
         markerwritten = 1;
      }

      // on the last block, put the bit length at the very end
      lastblock = (i == (numblocks - 1));
      if (lastblock)
      {
         // point at the last byte in the block
         message = workbuffer + bytes_per_block - 1;
         for (j = 0; j < wordsize/4; j++)
         {
            *message-- = (uchar)bitlength;
            bitlength = bitlength >> 8;
         }
      }

      // SHA in software 
      sha256_hashblock(workbuffer, (ushort)(lastblock && skipconst), H32);
      message += bytes_per_block;
   }

   sha_writeResult(reverse, digest, H32);

  #ifdef DEBUG_SHA
  dprintf("\nSHA-256 Result:\n");
  for (i = 0; i < 32; i++)
     dprintf("%02X ",digest[i]);
  dprintf("\n");
  #endif
}

//-----------------------------------------------------------------------------
// ------ Internal utility functions to support SHA-256 calculation
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_ch(ulong x, ulong y, ulong z)
{
   return (x & y) ^ ((~x) & z);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_maj(ulong x, ulong y, ulong z)
{
   ulong temp = x & y;
   temp ^= (x & z);
   temp ^= (y & z);
   return temp;  //(x & y) ^ (x & z) ^ (y & z);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_rotr_32(ulong val, ushort r)
{
   val = val & 0xFFFFFFFFL;
   return ((val >> r) | (val << (32 - r))) & 0xFFFFFFFFL;
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_shr_32(ulong val, ushort r)
{
   val = val & 0xFFFFFFFFL;
   return val >> r;
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_bigsigma256_0(ulong x)
{
   return sha_rotr_32(x,2) ^ sha_rotr_32(x,13) ^ sha_rotr_32(x,22);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_bigsigma256_1(ulong x)
{
   return sha_rotr_32(x,6) ^ sha_rotr_32(x,11) ^ sha_rotr_32(x,25);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_littlesigma256_0(ulong x)
{
   return sha_rotr_32(x,7) ^ sha_rotr_32(x,18) ^ sha_shr_32(x,3);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_littlesigma256_1(ulong x)
{
   return sha_rotr_32(x,17) ^ sha_rotr_32(x,19) ^ sha_shr_32(x,10);
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static void sha_copy32(const ulong* p1, ulong* p2, ushort length)
{
   while (length > 0)
   {
      *p2++ = *p1++;
      length--;
   }
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static void sha_copyWordsToBytes32(const ulong* input, uchar* output, ushort numwords)
{
    ulong temp;
    ushort i;

    for (i=0;i<numwords;i++)
    {
        temp = *input++;
        *output++ = (uchar)(temp >> 24);
        *output++ = (uchar)(temp >> 16);
        *output++ = (uchar)(temp >> 8);
        *output++ = (uchar)(temp);
    }
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static void sha_writeResult(ushort reverse, uchar* outpointer, const ulong* H32)
{
   int i;
   uchar tmp;

   sha_copyWordsToBytes32(H32, outpointer, 8); 

   if (reverse)
   {
      for (i = 0; i < 16; i++)
      {  
         tmp = outpointer[i];
         outpointer[i] = outpointer[31-i];
         outpointer[31-i] = tmp;
      }
   }

}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// @endinternal
//
static ulong sha_getW(int index, ulong* W32)
{
   ulong newW;
   if (index < 16)
   {
      return W32[index];
   }

   newW = sha_littlesigma256_1(W32[(index-2)&0x0f]) + 
            W32[(index-7)&0x0f] + 
          sha_littlesigma256_0(W32[(index-15)&0x0f]) + 
            W32[(index-16)&0x0f];
   W32[index & 0x0f] = newW & 0xFFFFFFFFL;  // just in case...

   return newW;
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function
/// Prepair the block for hashing
/// @endinternal
//
static void sha_prepareSchedule(const uchar* message, ulong* W32)
{
   // we need to copy the initial message into the 16 W registers
   ushort i,j;
   ulong temp;
   for (i = 0; i < 16; i++)
   {
      temp = 0;
      for (j = 0; j < 4;j++)
      {
         temp = temp << 8;
         temp = temp | (*message & 0xff);
         message++;
      }

      W32[i] = temp;
   }
}

//-----------------------------------------------------------------------------
/// @internal
/// SHA-256 support function 
/// Hash a single block of data.
/// @endinternal
//
static void sha256_hashblock(const uchar* message, ushort lastblock, ulong* H32)
{
   ushort sha1counter = 0;
   ushort sha1functionselect = 0;
   ushort i;
   ulong nodeT1, nodeT2;

   ulong Wt, Kt;
   
   ulong a32, b32, c32, d32, e32, f32, g32, h32; // SHA working variables
   ulong W32[16];                                // SHA message schedule

   // chunk the original message into the working schedule
   sha_prepareSchedule(message, W32);

   a32 = H32[0];
   b32 = H32[1];
   c32 = H32[2];
   d32 = H32[3];
   e32 = H32[4];
   f32 = H32[5];
   g32 = H32[6];
   h32 = H32[7];

   // rounds
   for (i = 0; i < 64; i++)
   {
      Wt = sha_getW(i, W32);
      Kt = SHA_CONSTANTS[i]; 

      nodeT1 = (h32 + sha_bigsigma256_1(e32) + sha_ch(e32,f32,g32) + Kt + Wt); // & 0xFFFFFFFFL;
      nodeT2 = (sha_bigsigma256_0(a32) + sha_maj(a32,b32,c32)); // & 0xFFFFFFFFL;
      h32 = g32;
      g32 = f32;
      f32 = e32;
      e32 = d32 + nodeT1;
      d32 = c32;
      c32 = b32;
      b32 = a32;
      a32 = nodeT1 + nodeT2;

      sha1counter++;
      if (sha1counter==20)
      {
         sha1functionselect++;
         sha1counter = 0;
      }			

   }

   if (!lastblock)
   {
      // now fix up our H array
      H32[0] += a32;
      H32[1] += b32;
      H32[2] += c32;
      H32[3] += d32;
      H32[4] += e32;
      H32[5] += f32;
      H32[6] += g32;
      H32[7] += h32;
   }
   else
   {
      // now fix up our H array
      H32[0] = a32;
      H32[1] = b32;
      H32[2] = c32;
      H32[3] = d32;
      H32[4] = e32;
      H32[5] = f32;
      H32[6] = g32;
      H32[7] = h32;
   }
}