DeepCover Embedded Security in IoT: Public-key Secured Data Paths

Dependencies:   MaximInterface

The MAXREFDES155# is an internet-of-things (IoT) embedded-security reference design, built to authenticate and control a sensing node using elliptic-curve-based public-key cryptography with control and notification from a web server.

The hardware includes an ARM® mbed™ shield and attached sensor endpoint. The shield contains a DS2476 DeepCover® ECDSA/SHA-2 coprocessor, Wifi communication, LCD push-button controls, and status LEDs. The sensor endpoint is attached to the shield using a 300mm cable and contains a DS28C36 DeepCover ECDSA/SHA-2 authenticator, IR-thermal sensor, and aiming laser for the IR sensor. The MAXREFDES155# is equipped with a standard Arduino® form-factor shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The combination of these two devices represent an IoT device. Communication to the web server is accomplished with the shield Wifi circuitry. Communication from the shield to the attached sensor module is accomplished over I2C . The sensor module represents an IoT endpoint that generates small data with a requirement for message authenticity/integrity and secure on/off operational control.

The design is hierarchical with each mbed platform and shield communicating data from the sensor node to a web server that maintains a centralized log and dispatches notifications as necessary. The simplicity of this design enables rapid integration into any star-topology IoT network to provide security with the low overhead and cost provided by the ECDSA-P256 asymmetric-key and SHA-256 symmetric-key algorithms.

More information about the MAXREFDES155# is available on the Maxim Integrated website.

xternal/rapidjson/internal/diyfp.h

Committer:
IanBenzMaxim
Date:
2019-12-03
Revision:
18:c2631e985780
Parent:
16:a004191a79ab

File content as of revision 18:c2631e985780:

// Tencent is pleased to support the open source community by making RapidJSON available.
// 
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software distributed 
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
// CONDITIONS OF ANY KIND, either express or implied. See the License for the 
// specific language governing permissions and limitations under the License.

// This is a C++ header-only implementation of Grisu2 algorithm from the publication:
// Loitsch, Florian. "Printing floating-point numbers quickly and accurately with
// integers." ACM Sigplan Notices 45.6 (2010): 233-243.

#ifndef RAPIDJSON_DIYFP_H_
#define RAPIDJSON_DIYFP_H_

#include "../rapidjson.h"

#if defined(_MSC_VER) && defined(_M_AMD64)
#include <intrin.h>
#pragma intrinsic(_BitScanReverse64)
#pragma intrinsic(_umul128)
#endif

RAPIDJSON_NAMESPACE_BEGIN
namespace internal {

#ifdef __GNUC__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
#endif

#ifdef __clang__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(padded)
#endif

struct DiyFp {
    DiyFp() : f(), e() {}

    DiyFp(uint64_t fp, int exp) : f(fp), e(exp) {}

    explicit DiyFp(double d) {
        union {
            double d;
            uint64_t u64;
        } u = { d };

        int biased_e = static_cast<int>((u.u64 & kDpExponentMask) >> kDpSignificandSize);
        uint64_t significand = (u.u64 & kDpSignificandMask);
        if (biased_e != 0) {
            f = significand + kDpHiddenBit;
            e = biased_e - kDpExponentBias;
        } 
        else {
            f = significand;
            e = kDpMinExponent + 1;
        }
    }

    DiyFp operator-(const DiyFp& rhs) const {
        return DiyFp(f - rhs.f, e);
    }

    DiyFp operator*(const DiyFp& rhs) const {
#if defined(_MSC_VER) && defined(_M_AMD64)
        uint64_t h;
        uint64_t l = _umul128(f, rhs.f, &h);
        if (l & (uint64_t(1) << 63)) // rounding
            h++;
        return DiyFp(h, e + rhs.e + 64);
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
        __extension__ typedef unsigned __int128 uint128;
        uint128 p = static_cast<uint128>(f) * static_cast<uint128>(rhs.f);
        uint64_t h = static_cast<uint64_t>(p >> 64);
        uint64_t l = static_cast<uint64_t>(p);
        if (l & (uint64_t(1) << 63)) // rounding
            h++;
        return DiyFp(h, e + rhs.e + 64);
#else
        const uint64_t M32 = 0xFFFFFFFF;
        const uint64_t a = f >> 32;
        const uint64_t b = f & M32;
        const uint64_t c = rhs.f >> 32;
        const uint64_t d = rhs.f & M32;
        const uint64_t ac = a * c;
        const uint64_t bc = b * c;
        const uint64_t ad = a * d;
        const uint64_t bd = b * d;
        uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
        tmp += 1U << 31;  /// mult_round
        return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
#endif
    }

    DiyFp Normalize() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
        unsigned long index;
        _BitScanReverse64(&index, f);
        return DiyFp(f << (63 - index), e - (63 - index));
#elif defined(__GNUC__) && __GNUC__ >= 4
        int s = __builtin_clzll(f);
        return DiyFp(f << s, e - s);
#else
        DiyFp res = *this;
        while (!(res.f & (static_cast<uint64_t>(1) << 63))) {
            res.f <<= 1;
            res.e--;
        }
        return res;
#endif
    }

    DiyFp NormalizeBoundary() const {
        DiyFp res = *this;
        while (!(res.f & (kDpHiddenBit << 1))) {
            res.f <<= 1;
            res.e--;
        }
        res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
        res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
        return res;
    }

    void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
        DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
        DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
        mi.f <<= mi.e - pl.e;
        mi.e = pl.e;
        *plus = pl;
        *minus = mi;
    }

    double ToDouble() const {
        union {
            double d;
            uint64_t u64;
        }u;
        const uint64_t be = (e == kDpDenormalExponent && (f & kDpHiddenBit) == 0) ? 0 : 
            static_cast<uint64_t>(e + kDpExponentBias);
        u.u64 = (f & kDpSignificandMask) | (be << kDpSignificandSize);
        return u.d;
    }

    static const int kDiySignificandSize = 64;
    static const int kDpSignificandSize = 52;
    static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
    static const int kDpMaxExponent = 0x7FF - kDpExponentBias;
    static const int kDpMinExponent = -kDpExponentBias;
    static const int kDpDenormalExponent = -kDpExponentBias + 1;
    static const uint64_t kDpExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
    static const uint64_t kDpSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
    static const uint64_t kDpHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);

    uint64_t f;
    int e;
};

inline DiyFp GetCachedPowerByIndex(size_t index) {
    // 10^-348, 10^-340, ..., 10^340
    static const uint64_t kCachedPowers_F[] = {
        RAPIDJSON_UINT64_C2(0xfa8fd5a0, 0x081c0288), RAPIDJSON_UINT64_C2(0xbaaee17f, 0xa23ebf76),
        RAPIDJSON_UINT64_C2(0x8b16fb20, 0x3055ac76), RAPIDJSON_UINT64_C2(0xcf42894a, 0x5dce35ea),
        RAPIDJSON_UINT64_C2(0x9a6bb0aa, 0x55653b2d), RAPIDJSON_UINT64_C2(0xe61acf03, 0x3d1a45df),
        RAPIDJSON_UINT64_C2(0xab70fe17, 0xc79ac6ca), RAPIDJSON_UINT64_C2(0xff77b1fc, 0xbebcdc4f),
        RAPIDJSON_UINT64_C2(0xbe5691ef, 0x416bd60c), RAPIDJSON_UINT64_C2(0x8dd01fad, 0x907ffc3c),
        RAPIDJSON_UINT64_C2(0xd3515c28, 0x31559a83), RAPIDJSON_UINT64_C2(0x9d71ac8f, 0xada6c9b5),
        RAPIDJSON_UINT64_C2(0xea9c2277, 0x23ee8bcb), RAPIDJSON_UINT64_C2(0xaecc4991, 0x4078536d),
        RAPIDJSON_UINT64_C2(0x823c1279, 0x5db6ce57), RAPIDJSON_UINT64_C2(0xc2109436, 0x4dfb5637),
        RAPIDJSON_UINT64_C2(0x9096ea6f, 0x3848984f), RAPIDJSON_UINT64_C2(0xd77485cb, 0x25823ac7),
        RAPIDJSON_UINT64_C2(0xa086cfcd, 0x97bf97f4), RAPIDJSON_UINT64_C2(0xef340a98, 0x172aace5),
        RAPIDJSON_UINT64_C2(0xb23867fb, 0x2a35b28e), RAPIDJSON_UINT64_C2(0x84c8d4df, 0xd2c63f3b),
        RAPIDJSON_UINT64_C2(0xc5dd4427, 0x1ad3cdba), RAPIDJSON_UINT64_C2(0x936b9fce, 0xbb25c996),
        RAPIDJSON_UINT64_C2(0xdbac6c24, 0x7d62a584), RAPIDJSON_UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
        RAPIDJSON_UINT64_C2(0xf3e2f893, 0xdec3f126), RAPIDJSON_UINT64_C2(0xb5b5ada8, 0xaaff80b8),
        RAPIDJSON_UINT64_C2(0x87625f05, 0x6c7c4a8b), RAPIDJSON_UINT64_C2(0xc9bcff60, 0x34c13053),
        RAPIDJSON_UINT64_C2(0x964e858c, 0x91ba2655), RAPIDJSON_UINT64_C2(0xdff97724, 0x70297ebd),
        RAPIDJSON_UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), RAPIDJSON_UINT64_C2(0xf8a95fcf, 0x88747d94),
        RAPIDJSON_UINT64_C2(0xb9447093, 0x8fa89bcf), RAPIDJSON_UINT64_C2(0x8a08f0f8, 0xbf0f156b),
        RAPIDJSON_UINT64_C2(0xcdb02555, 0x653131b6), RAPIDJSON_UINT64_C2(0x993fe2c6, 0xd07b7fac),
        RAPIDJSON_UINT64_C2(0xe45c10c4, 0x2a2b3b06), RAPIDJSON_UINT64_C2(0xaa242499, 0x697392d3),
        RAPIDJSON_UINT64_C2(0xfd87b5f2, 0x8300ca0e), RAPIDJSON_UINT64_C2(0xbce50864, 0x92111aeb),
        RAPIDJSON_UINT64_C2(0x8cbccc09, 0x6f5088cc), RAPIDJSON_UINT64_C2(0xd1b71758, 0xe219652c),
        RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), RAPIDJSON_UINT64_C2(0xe8d4a510, 0x00000000),
        RAPIDJSON_UINT64_C2(0xad78ebc5, 0xac620000), RAPIDJSON_UINT64_C2(0x813f3978, 0xf8940984),
        RAPIDJSON_UINT64_C2(0xc097ce7b, 0xc90715b3), RAPIDJSON_UINT64_C2(0x8f7e32ce, 0x7bea5c70),
        RAPIDJSON_UINT64_C2(0xd5d238a4, 0xabe98068), RAPIDJSON_UINT64_C2(0x9f4f2726, 0x179a2245),
        RAPIDJSON_UINT64_C2(0xed63a231, 0xd4c4fb27), RAPIDJSON_UINT64_C2(0xb0de6538, 0x8cc8ada8),
        RAPIDJSON_UINT64_C2(0x83c7088e, 0x1aab65db), RAPIDJSON_UINT64_C2(0xc45d1df9, 0x42711d9a),
        RAPIDJSON_UINT64_C2(0x924d692c, 0xa61be758), RAPIDJSON_UINT64_C2(0xda01ee64, 0x1a708dea),
        RAPIDJSON_UINT64_C2(0xa26da399, 0x9aef774a), RAPIDJSON_UINT64_C2(0xf209787b, 0xb47d6b85),
        RAPIDJSON_UINT64_C2(0xb454e4a1, 0x79dd1877), RAPIDJSON_UINT64_C2(0x865b8692, 0x5b9bc5c2),
        RAPIDJSON_UINT64_C2(0xc83553c5, 0xc8965d3d), RAPIDJSON_UINT64_C2(0x952ab45c, 0xfa97a0b3),
        RAPIDJSON_UINT64_C2(0xde469fbd, 0x99a05fe3), RAPIDJSON_UINT64_C2(0xa59bc234, 0xdb398c25),
        RAPIDJSON_UINT64_C2(0xf6c69a72, 0xa3989f5c), RAPIDJSON_UINT64_C2(0xb7dcbf53, 0x54e9bece),
        RAPIDJSON_UINT64_C2(0x88fcf317, 0xf22241e2), RAPIDJSON_UINT64_C2(0xcc20ce9b, 0xd35c78a5),
        RAPIDJSON_UINT64_C2(0x98165af3, 0x7b2153df), RAPIDJSON_UINT64_C2(0xe2a0b5dc, 0x971f303a),
        RAPIDJSON_UINT64_C2(0xa8d9d153, 0x5ce3b396), RAPIDJSON_UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
        RAPIDJSON_UINT64_C2(0xbb764c4c, 0xa7a44410), RAPIDJSON_UINT64_C2(0x8bab8eef, 0xb6409c1a),
        RAPIDJSON_UINT64_C2(0xd01fef10, 0xa657842c), RAPIDJSON_UINT64_C2(0x9b10a4e5, 0xe9913129),
        RAPIDJSON_UINT64_C2(0xe7109bfb, 0xa19c0c9d), RAPIDJSON_UINT64_C2(0xac2820d9, 0x623bf429),
        RAPIDJSON_UINT64_C2(0x80444b5e, 0x7aa7cf85), RAPIDJSON_UINT64_C2(0xbf21e440, 0x03acdd2d),
        RAPIDJSON_UINT64_C2(0x8e679c2f, 0x5e44ff8f), RAPIDJSON_UINT64_C2(0xd433179d, 0x9c8cb841),
        RAPIDJSON_UINT64_C2(0x9e19db92, 0xb4e31ba9), RAPIDJSON_UINT64_C2(0xeb96bf6e, 0xbadf77d9),
        RAPIDJSON_UINT64_C2(0xaf87023b, 0x9bf0ee6b)
    };
    static const int16_t kCachedPowers_E[] = {
        -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007,  -980,
        -954,  -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,
        -688,  -661,  -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,
        -422,  -396,  -369,  -343,  -316,  -289,  -263,  -236,  -210,  -183,
        -157,  -130,  -103,   -77,   -50,   -24,     3,    30,    56,    83,
        109,   136,   162,   189,   216,   242,   269,   295,   322,   348,
        375,   402,   428,   455,   481,   508,   534,   561,   588,   614,
        641,   667,   694,   720,   747,   774,   800,   827,   853,   880,
        907,   933,   960,   986,  1013,  1039,  1066
    };
    return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
}
    
inline DiyFp GetCachedPower(int e, int* K) {

    //int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
    double dk = (-61 - e) * 0.30102999566398114 + 347;  // dk must be positive, so can do ceiling in positive
    int k = static_cast<int>(dk);
    if (dk - k > 0.0)
        k++;

    unsigned index = static_cast<unsigned>((k >> 3) + 1);
    *K = -(-348 + static_cast<int>(index << 3));    // decimal exponent no need lookup table

    return GetCachedPowerByIndex(index);
}

inline DiyFp GetCachedPower10(int exp, int *outExp) {
     unsigned index = (static_cast<unsigned>(exp) + 348u) / 8u;
     *outExp = -348 + static_cast<int>(index) * 8;
     return GetCachedPowerByIndex(index);
 }

#ifdef __GNUC__
RAPIDJSON_DIAG_POP
#endif

#ifdef __clang__
RAPIDJSON_DIAG_POP
RAPIDJSON_DIAG_OFF(padded)
#endif

} // namespace internal
RAPIDJSON_NAMESPACE_END

#endif // RAPIDJSON_DIYFP_H_