DeepCover Embedded Security in IoT: Public-key Secured Data Paths
Dependencies: MaximInterface
The MAXREFDES155# is an internet-of-things (IoT) embedded-security reference design, built to authenticate and control a sensing node using elliptic-curve-based public-key cryptography with control and notification from a web server.
The hardware includes an ARM® mbed™ shield and attached sensor endpoint. The shield contains a DS2476 DeepCover® ECDSA/SHA-2 coprocessor, Wifi communication, LCD push-button controls, and status LEDs. The sensor endpoint is attached to the shield using a 300mm cable and contains a DS28C36 DeepCover ECDSA/SHA-2 authenticator, IR-thermal sensor, and aiming laser for the IR sensor. The MAXREFDES155# is equipped with a standard Arduino® form-factor shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The combination of these two devices represent an IoT device. Communication to the web server is accomplished with the shield Wifi circuitry. Communication from the shield to the attached sensor module is accomplished over I2C . The sensor module represents an IoT endpoint that generates small data with a requirement for message authenticity/integrity and secure on/off operational control.
The design is hierarchical with each mbed platform and shield communicating data from the sensor node to a web server that maintains a centralized log and dispatches notifications as necessary. The simplicity of this design enables rapid integration into any star-topology IoT network to provide security with the low overhead and cost provided by the ECDSA-P256 asymmetric-key and SHA-256 symmetric-key algorithms.
More information about the MAXREFDES155# is available on the Maxim Integrated website.
xternal/rapidjson/reader.h
- Committer:
- IanBenzMaxim
- Date:
- 2019-10-03
- Revision:
- 16:a004191a79ab
- Parent:
- rapidjson/reader.h@ 0:33d4e66780c0
File content as of revision 16:a004191a79ab:
// Tencent is pleased to support the open source community by making RapidJSON available. // // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. // // Licensed under the MIT License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // http://opensource.org/licenses/MIT // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #ifndef RAPIDJSON_READER_H_ #define RAPIDJSON_READER_H_ /*! \file reader.h */ #include "allocators.h" #include "stream.h" #include "encodedstream.h" #include "internal/meta.h" #include "internal/stack.h" #include "internal/strtod.h" #include <limits> #if defined(RAPIDJSON_SIMD) && defined(_MSC_VER) #include <intrin.h> #pragma intrinsic(_BitScanForward) #endif #ifdef RAPIDJSON_SSE42 #include <nmmintrin.h> #elif defined(RAPIDJSON_SSE2) #include <emmintrin.h> #endif #ifdef _MSC_VER RAPIDJSON_DIAG_PUSH RAPIDJSON_DIAG_OFF(4127) // conditional expression is constant RAPIDJSON_DIAG_OFF(4702) // unreachable code #endif #ifdef __clang__ RAPIDJSON_DIAG_PUSH RAPIDJSON_DIAG_OFF(old-style-cast) RAPIDJSON_DIAG_OFF(padded) RAPIDJSON_DIAG_OFF(switch-enum) #endif #ifdef __GNUC__ RAPIDJSON_DIAG_PUSH RAPIDJSON_DIAG_OFF(effc++) #endif //!@cond RAPIDJSON_HIDDEN_FROM_DOXYGEN #define RAPIDJSON_NOTHING /* deliberately empty */ #ifndef RAPIDJSON_PARSE_ERROR_EARLY_RETURN #define RAPIDJSON_PARSE_ERROR_EARLY_RETURN(value) \ RAPIDJSON_MULTILINEMACRO_BEGIN \ if (RAPIDJSON_UNLIKELY(HasParseError())) { return value; } \ RAPIDJSON_MULTILINEMACRO_END #endif #define RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID \ RAPIDJSON_PARSE_ERROR_EARLY_RETURN(RAPIDJSON_NOTHING) //!@endcond /*! \def RAPIDJSON_PARSE_ERROR_NORETURN \ingroup RAPIDJSON_ERRORS \brief Macro to indicate a parse error. \param parseErrorCode \ref rapidjson::ParseErrorCode of the error \param offset position of the error in JSON input (\c size_t) This macros can be used as a customization point for the internal error handling mechanism of RapidJSON. A common usage model is to throw an exception instead of requiring the caller to explicitly check the \ref rapidjson::GenericReader::Parse's return value: \code #define RAPIDJSON_PARSE_ERROR_NORETURN(parseErrorCode,offset) \ throw ParseException(parseErrorCode, #parseErrorCode, offset) #include <stdexcept> // std::runtime_error #include "rapidjson/error/error.h" // rapidjson::ParseResult struct ParseException : std::runtime_error, rapidjson::ParseResult { ParseException(rapidjson::ParseErrorCode code, const char* msg, size_t offset) : std::runtime_error(msg), ParseResult(code, offset) {} }; #include "rapidjson/reader.h" \endcode \see RAPIDJSON_PARSE_ERROR, rapidjson::GenericReader::Parse */ #ifndef RAPIDJSON_PARSE_ERROR_NORETURN #define RAPIDJSON_PARSE_ERROR_NORETURN(parseErrorCode, offset) \ RAPIDJSON_MULTILINEMACRO_BEGIN \ RAPIDJSON_ASSERT(!HasParseError()); /* Error can only be assigned once */ \ SetParseError(parseErrorCode, offset); \ RAPIDJSON_MULTILINEMACRO_END #endif /*! \def RAPIDJSON_PARSE_ERROR \ingroup RAPIDJSON_ERRORS \brief (Internal) macro to indicate and handle a parse error. \param parseErrorCode \ref rapidjson::ParseErrorCode of the error \param offset position of the error in JSON input (\c size_t) Invokes RAPIDJSON_PARSE_ERROR_NORETURN and stops the parsing. \see RAPIDJSON_PARSE_ERROR_NORETURN \hideinitializer */ #ifndef RAPIDJSON_PARSE_ERROR #define RAPIDJSON_PARSE_ERROR(parseErrorCode, offset) \ RAPIDJSON_MULTILINEMACRO_BEGIN \ RAPIDJSON_PARSE_ERROR_NORETURN(parseErrorCode, offset); \ RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; \ RAPIDJSON_MULTILINEMACRO_END #endif #include "error/error.h" // ParseErrorCode, ParseResult RAPIDJSON_NAMESPACE_BEGIN /////////////////////////////////////////////////////////////////////////////// // ParseFlag /*! \def RAPIDJSON_PARSE_DEFAULT_FLAGS \ingroup RAPIDJSON_CONFIG \brief User-defined kParseDefaultFlags definition. User can define this as any \c ParseFlag combinations. */ #ifndef RAPIDJSON_PARSE_DEFAULT_FLAGS #define RAPIDJSON_PARSE_DEFAULT_FLAGS kParseNoFlags #endif //! Combination of parseFlags /*! \see Reader::Parse, Document::Parse, Document::ParseInsitu, Document::ParseStream */ enum ParseFlag { kParseNoFlags = 0, //!< No flags are set. kParseInsituFlag = 1, //!< In-situ(destructive) parsing. kParseValidateEncodingFlag = 2, //!< Validate encoding of JSON strings. kParseIterativeFlag = 4, //!< Iterative(constant complexity in terms of function call stack size) parsing. kParseStopWhenDoneFlag = 8, //!< After parsing a complete JSON root from stream, stop further processing the rest of stream. When this flag is used, parser will not generate kParseErrorDocumentRootNotSingular error. kParseFullPrecisionFlag = 16, //!< Parse number in full precision (but slower). kParseCommentsFlag = 32, //!< Allow one-line (//) and multi-line (/**/) comments. kParseNumbersAsStringsFlag = 64, //!< Parse all numbers (ints/doubles) as strings. kParseTrailingCommasFlag = 128, //!< Allow trailing commas at the end of objects and arrays. kParseNanAndInfFlag = 256, //!< Allow parsing NaN, Inf, Infinity, -Inf and -Infinity as doubles. kParseDefaultFlags = RAPIDJSON_PARSE_DEFAULT_FLAGS //!< Default parse flags. Can be customized by defining RAPIDJSON_PARSE_DEFAULT_FLAGS }; /////////////////////////////////////////////////////////////////////////////// // Handler /*! \class rapidjson::Handler \brief Concept for receiving events from GenericReader upon parsing. The functions return true if no error occurs. If they return false, the event publisher should terminate the process. \code concept Handler { typename Ch; bool Null(); bool Bool(bool b); bool Int(int i); bool Uint(unsigned i); bool Int64(int64_t i); bool Uint64(uint64_t i); bool Double(double d); /// enabled via kParseNumbersAsStringsFlag, string is not null-terminated (use length) bool RawNumber(const Ch* str, SizeType length, bool copy); bool String(const Ch* str, SizeType length, bool copy); bool StartObject(); bool Key(const Ch* str, SizeType length, bool copy); bool EndObject(SizeType memberCount); bool StartArray(); bool EndArray(SizeType elementCount); }; \endcode */ /////////////////////////////////////////////////////////////////////////////// // BaseReaderHandler //! Default implementation of Handler. /*! This can be used as base class of any reader handler. \note implements Handler concept */ template<typename Encoding = UTF8<>, typename Derived = void> struct BaseReaderHandler { typedef typename Encoding::Ch Ch; typedef typename internal::SelectIf<internal::IsSame<Derived, void>, BaseReaderHandler, Derived>::Type Override; bool Default() { return true; } bool Null() { return static_cast<Override&>(*this).Default(); } bool Bool(bool) { return static_cast<Override&>(*this).Default(); } bool Int(int) { return static_cast<Override&>(*this).Default(); } bool Uint(unsigned) { return static_cast<Override&>(*this).Default(); } bool Int64(int64_t) { return static_cast<Override&>(*this).Default(); } bool Uint64(uint64_t) { return static_cast<Override&>(*this).Default(); } bool Double(double) { return static_cast<Override&>(*this).Default(); } /// enabled via kParseNumbersAsStringsFlag, string is not null-terminated (use length) bool RawNumber(const Ch* str, SizeType len, bool copy) { return static_cast<Override&>(*this).String(str, len, copy); } bool String(const Ch*, SizeType, bool) { return static_cast<Override&>(*this).Default(); } bool StartObject() { return static_cast<Override&>(*this).Default(); } bool Key(const Ch* str, SizeType len, bool copy) { return static_cast<Override&>(*this).String(str, len, copy); } bool EndObject(SizeType) { return static_cast<Override&>(*this).Default(); } bool StartArray() { return static_cast<Override&>(*this).Default(); } bool EndArray(SizeType) { return static_cast<Override&>(*this).Default(); } }; /////////////////////////////////////////////////////////////////////////////// // StreamLocalCopy namespace internal { template<typename Stream, int = StreamTraits<Stream>::copyOptimization> class StreamLocalCopy; //! Do copy optimization. template<typename Stream> class StreamLocalCopy<Stream, 1> { public: StreamLocalCopy(Stream& original) : s(original), original_(original) {} ~StreamLocalCopy() { original_ = s; } Stream s; private: StreamLocalCopy& operator=(const StreamLocalCopy&) /* = delete */; Stream& original_; }; //! Keep reference. template<typename Stream> class StreamLocalCopy<Stream, 0> { public: StreamLocalCopy(Stream& original) : s(original) {} Stream& s; private: StreamLocalCopy& operator=(const StreamLocalCopy&) /* = delete */; }; } // namespace internal /////////////////////////////////////////////////////////////////////////////// // SkipWhitespace //! Skip the JSON white spaces in a stream. /*! \param is A input stream for skipping white spaces. \note This function has SSE2/SSE4.2 specialization. */ template<typename InputStream> void SkipWhitespace(InputStream& is) { internal::StreamLocalCopy<InputStream> copy(is); InputStream& s(copy.s); typename InputStream::Ch c; while ((c = s.Peek()) == ' ' || c == '\n' || c == '\r' || c == '\t') s.Take(); } inline const char* SkipWhitespace(const char* p, const char* end) { while (p != end && (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t')) ++p; return p; } #ifdef RAPIDJSON_SSE42 //! Skip whitespace with SSE 4.2 pcmpistrm instruction, testing 16 8-byte characters at once. inline const char *SkipWhitespace_SIMD(const char* p) { // Fast return for single non-whitespace if (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t') ++p; else return p; // 16-byte align to the next boundary const char* nextAligned = reinterpret_cast<const char*>((reinterpret_cast<size_t>(p) + 15) & static_cast<size_t>(~15)); while (p != nextAligned) if (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t') ++p; else return p; // The rest of string using SIMD static const char whitespace[16] = " \n\r\t"; const __m128i w = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespace[0])); for (;; p += 16) { const __m128i s = _mm_load_si128(reinterpret_cast<const __m128i *>(p)); const int r = _mm_cvtsi128_si32(_mm_cmpistrm(w, s, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK | _SIDD_NEGATIVE_POLARITY)); if (r != 0) { // some of characters is non-whitespace #ifdef _MSC_VER // Find the index of first non-whitespace unsigned long offset; _BitScanForward(&offset, r); return p + offset; #else return p + __builtin_ffs(r) - 1; #endif } } } inline const char *SkipWhitespace_SIMD(const char* p, const char* end) { // Fast return for single non-whitespace if (p != end && (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t')) ++p; else return p; // The middle of string using SIMD static const char whitespace[16] = " \n\r\t"; const __m128i w = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespace[0])); for (; p <= end - 16; p += 16) { const __m128i s = _mm_loadu_si128(reinterpret_cast<const __m128i *>(p)); const int r = _mm_cvtsi128_si32(_mm_cmpistrm(w, s, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK | _SIDD_NEGATIVE_POLARITY)); if (r != 0) { // some of characters is non-whitespace #ifdef _MSC_VER // Find the index of first non-whitespace unsigned long offset; _BitScanForward(&offset, r); return p + offset; #else return p + __builtin_ffs(r) - 1; #endif } } return SkipWhitespace(p, end); } #elif defined(RAPIDJSON_SSE2) //! Skip whitespace with SSE2 instructions, testing 16 8-byte characters at once. inline const char *SkipWhitespace_SIMD(const char* p) { // Fast return for single non-whitespace if (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t') ++p; else return p; // 16-byte align to the next boundary const char* nextAligned = reinterpret_cast<const char*>((reinterpret_cast<size_t>(p) + 15) & static_cast<size_t>(~15)); while (p != nextAligned) if (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t') ++p; else return p; // The rest of string #define C16(c) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c } static const char whitespaces[4][16] = { C16(' '), C16('\n'), C16('\r'), C16('\t') }; #undef C16 const __m128i w0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[0][0])); const __m128i w1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[1][0])); const __m128i w2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[2][0])); const __m128i w3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[3][0])); for (;; p += 16) { const __m128i s = _mm_load_si128(reinterpret_cast<const __m128i *>(p)); __m128i x = _mm_cmpeq_epi8(s, w0); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w1)); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w2)); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w3)); unsigned short r = static_cast<unsigned short>(~_mm_movemask_epi8(x)); if (r != 0) { // some of characters may be non-whitespace #ifdef _MSC_VER // Find the index of first non-whitespace unsigned long offset; _BitScanForward(&offset, r); return p + offset; #else return p + __builtin_ffs(r) - 1; #endif } } } inline const char *SkipWhitespace_SIMD(const char* p, const char* end) { // Fast return for single non-whitespace if (p != end && (*p == ' ' || *p == '\n' || *p == '\r' || *p == '\t')) ++p; else return p; // The rest of string #define C16(c) { c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c } static const char whitespaces[4][16] = { C16(' '), C16('\n'), C16('\r'), C16('\t') }; #undef C16 const __m128i w0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[0][0])); const __m128i w1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[1][0])); const __m128i w2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[2][0])); const __m128i w3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&whitespaces[3][0])); for (; p <= end - 16; p += 16) { const __m128i s = _mm_loadu_si128(reinterpret_cast<const __m128i *>(p)); __m128i x = _mm_cmpeq_epi8(s, w0); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w1)); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w2)); x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w3)); unsigned short r = static_cast<unsigned short>(~_mm_movemask_epi8(x)); if (r != 0) { // some of characters may be non-whitespace #ifdef _MSC_VER // Find the index of first non-whitespace unsigned long offset; _BitScanForward(&offset, r); return p + offset; #else return p + __builtin_ffs(r) - 1; #endif } } return SkipWhitespace(p, end); } #endif // RAPIDJSON_SSE2 #ifdef RAPIDJSON_SIMD //! Template function specialization for InsituStringStream template<> inline void SkipWhitespace(InsituStringStream& is) { is.src_ = const_cast<char*>(SkipWhitespace_SIMD(is.src_)); } //! Template function specialization for StringStream template<> inline void SkipWhitespace(StringStream& is) { is.src_ = SkipWhitespace_SIMD(is.src_); } template<> inline void SkipWhitespace(EncodedInputStream<UTF8<>, MemoryStream>& is) { is.is_.src_ = SkipWhitespace_SIMD(is.is_.src_, is.is_.end_); } #endif // RAPIDJSON_SIMD /////////////////////////////////////////////////////////////////////////////// // GenericReader //! SAX-style JSON parser. Use \ref Reader for UTF8 encoding and default allocator. /*! GenericReader parses JSON text from a stream, and send events synchronously to an object implementing Handler concept. It needs to allocate a stack for storing a single decoded string during non-destructive parsing. For in-situ parsing, the decoded string is directly written to the source text string, no temporary buffer is required. A GenericReader object can be reused for parsing multiple JSON text. \tparam SourceEncoding Encoding of the input stream. \tparam TargetEncoding Encoding of the parse output. \tparam StackAllocator Allocator type for stack. */ template <typename SourceEncoding, typename TargetEncoding, typename StackAllocator = CrtAllocator> class GenericReader { public: typedef typename SourceEncoding::Ch Ch; //!< SourceEncoding character type //! Constructor. /*! \param stackAllocator Optional allocator for allocating stack memory. (Only use for non-destructive parsing) \param stackCapacity stack capacity in bytes for storing a single decoded string. (Only use for non-destructive parsing) */ GenericReader(StackAllocator* stackAllocator = 0, size_t stackCapacity = kDefaultStackCapacity) : stack_(stackAllocator, stackCapacity), parseResult_() {} //! Parse JSON text. /*! \tparam parseFlags Combination of \ref ParseFlag. \tparam InputStream Type of input stream, implementing Stream concept. \tparam Handler Type of handler, implementing Handler concept. \param is Input stream to be parsed. \param handler The handler to receive events. \return Whether the parsing is successful. */ template <unsigned parseFlags, typename InputStream, typename Handler> ParseResult Parse(InputStream& is, Handler& handler) { if (parseFlags & kParseIterativeFlag) return IterativeParse<parseFlags>(is, handler); parseResult_.Clear(); ClearStackOnExit scope(*this); SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); if (RAPIDJSON_UNLIKELY(is.Peek() == '\0')) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorDocumentEmpty, is.Tell()); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); } else { ParseValue<parseFlags>(is, handler); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); if (!(parseFlags & kParseStopWhenDoneFlag)) { SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); if (RAPIDJSON_UNLIKELY(is.Peek() != '\0')) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorDocumentRootNotSingular, is.Tell()); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); } } } return parseResult_; } //! Parse JSON text (with \ref kParseDefaultFlags) /*! \tparam InputStream Type of input stream, implementing Stream concept \tparam Handler Type of handler, implementing Handler concept. \param is Input stream to be parsed. \param handler The handler to receive events. \return Whether the parsing is successful. */ template <typename InputStream, typename Handler> ParseResult Parse(InputStream& is, Handler& handler) { return Parse<kParseDefaultFlags>(is, handler); } //! Whether a parse error has occured in the last parsing. bool HasParseError() const { return parseResult_.IsError(); } //! Get the \ref ParseErrorCode of last parsing. ParseErrorCode GetParseErrorCode() const { return parseResult_.Code(); } //! Get the position of last parsing error in input, 0 otherwise. size_t GetErrorOffset() const { return parseResult_.Offset(); } protected: void SetParseError(ParseErrorCode code, size_t offset) { parseResult_.Set(code, offset); } private: // Prohibit copy constructor & assignment operator. GenericReader(const GenericReader&); GenericReader& operator=(const GenericReader&); void ClearStack() { stack_.Clear(); } // clear stack on any exit from ParseStream, e.g. due to exception struct ClearStackOnExit { explicit ClearStackOnExit(GenericReader& r) : r_(r) {} ~ClearStackOnExit() { r_.ClearStack(); } private: GenericReader& r_; ClearStackOnExit(const ClearStackOnExit&); ClearStackOnExit& operator=(const ClearStackOnExit&); }; template<unsigned parseFlags, typename InputStream> void SkipWhitespaceAndComments(InputStream& is) { SkipWhitespace(is); if (parseFlags & kParseCommentsFlag) { while (RAPIDJSON_UNLIKELY(Consume(is, '/'))) { if (Consume(is, '*')) { while (true) { if (RAPIDJSON_UNLIKELY(is.Peek() == '\0')) RAPIDJSON_PARSE_ERROR(kParseErrorUnspecificSyntaxError, is.Tell()); else if (Consume(is, '*')) { if (Consume(is, '/')) break; } else is.Take(); } } else if (RAPIDJSON_LIKELY(Consume(is, '/'))) while (is.Peek() != '\0' && is.Take() != '\n') {} else RAPIDJSON_PARSE_ERROR(kParseErrorUnspecificSyntaxError, is.Tell()); SkipWhitespace(is); } } } // Parse object: { string : value, ... } template<unsigned parseFlags, typename InputStream, typename Handler> void ParseObject(InputStream& is, Handler& handler) { RAPIDJSON_ASSERT(is.Peek() == '{'); is.Take(); // Skip '{' if (RAPIDJSON_UNLIKELY(!handler.StartObject())) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (Consume(is, '}')) { if (RAPIDJSON_UNLIKELY(!handler.EndObject(0))) // empty object RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); return; } for (SizeType memberCount = 0;;) { if (RAPIDJSON_UNLIKELY(is.Peek() != '"')) RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissName, is.Tell()); ParseString<parseFlags>(is, handler, true); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (RAPIDJSON_UNLIKELY(!Consume(is, ':'))) RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissColon, is.Tell()); SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; ParseValue<parseFlags>(is, handler); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; ++memberCount; switch (is.Peek()) { case ',': is.Take(); SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; break; case '}': is.Take(); if (RAPIDJSON_UNLIKELY(!handler.EndObject(memberCount))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); return; default: RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissCommaOrCurlyBracket, is.Tell()); break; // This useless break is only for making warning and coverage happy } if (parseFlags & kParseTrailingCommasFlag) { if (is.Peek() == '}') { if (RAPIDJSON_UNLIKELY(!handler.EndObject(memberCount))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); is.Take(); return; } } } } // Parse array: [ value, ... ] template<unsigned parseFlags, typename InputStream, typename Handler> void ParseArray(InputStream& is, Handler& handler) { RAPIDJSON_ASSERT(is.Peek() == '['); is.Take(); // Skip '[' if (RAPIDJSON_UNLIKELY(!handler.StartArray())) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (Consume(is, ']')) { if (RAPIDJSON_UNLIKELY(!handler.EndArray(0))) // empty array RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); return; } for (SizeType elementCount = 0;;) { ParseValue<parseFlags>(is, handler); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; ++elementCount; SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (Consume(is, ',')) { SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; } else if (Consume(is, ']')) { if (RAPIDJSON_UNLIKELY(!handler.EndArray(elementCount))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); return; } else RAPIDJSON_PARSE_ERROR(kParseErrorArrayMissCommaOrSquareBracket, is.Tell()); if (parseFlags & kParseTrailingCommasFlag) { if (is.Peek() == ']') { if (RAPIDJSON_UNLIKELY(!handler.EndArray(elementCount))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); is.Take(); return; } } } } template<unsigned parseFlags, typename InputStream, typename Handler> void ParseNull(InputStream& is, Handler& handler) { RAPIDJSON_ASSERT(is.Peek() == 'n'); is.Take(); if (RAPIDJSON_LIKELY(Consume(is, 'u') && Consume(is, 'l') && Consume(is, 'l'))) { if (RAPIDJSON_UNLIKELY(!handler.Null())) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); } else RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, is.Tell()); } template<unsigned parseFlags, typename InputStream, typename Handler> void ParseTrue(InputStream& is, Handler& handler) { RAPIDJSON_ASSERT(is.Peek() == 't'); is.Take(); if (RAPIDJSON_LIKELY(Consume(is, 'r') && Consume(is, 'u') && Consume(is, 'e'))) { if (RAPIDJSON_UNLIKELY(!handler.Bool(true))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); } else RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, is.Tell()); } template<unsigned parseFlags, typename InputStream, typename Handler> void ParseFalse(InputStream& is, Handler& handler) { RAPIDJSON_ASSERT(is.Peek() == 'f'); is.Take(); if (RAPIDJSON_LIKELY(Consume(is, 'a') && Consume(is, 'l') && Consume(is, 's') && Consume(is, 'e'))) { if (RAPIDJSON_UNLIKELY(!handler.Bool(false))) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, is.Tell()); } else RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, is.Tell()); } template<typename InputStream> RAPIDJSON_FORCEINLINE static bool Consume(InputStream& is, typename InputStream::Ch expect) { if (RAPIDJSON_LIKELY(is.Peek() == expect)) { is.Take(); return true; } else return false; } // Helper function to parse four hexidecimal digits in \uXXXX in ParseString(). template<typename InputStream> unsigned ParseHex4(InputStream& is, size_t escapeOffset) { unsigned codepoint = 0; for (int i = 0; i < 4; i++) { Ch c = is.Peek(); codepoint <<= 4; codepoint += static_cast<unsigned>(c); if (c >= '0' && c <= '9') codepoint -= '0'; else if (c >= 'A' && c <= 'F') codepoint -= 'A' - 10; else if (c >= 'a' && c <= 'f') codepoint -= 'a' - 10; else { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorStringUnicodeEscapeInvalidHex, escapeOffset); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(0); } is.Take(); } return codepoint; } template <typename CharType> class StackStream { public: typedef CharType Ch; StackStream(internal::Stack<StackAllocator>& stack) : stack_(stack), length_(0) {} RAPIDJSON_FORCEINLINE void Put(Ch c) { *stack_.template Push<Ch>() = c; ++length_; } RAPIDJSON_FORCEINLINE void* Push(SizeType count) { length_ += count; return stack_.template Push<Ch>(count); } size_t Length() const { return length_; } Ch* Pop() { return stack_.template Pop<Ch>(length_); } private: StackStream(const StackStream&); StackStream& operator=(const StackStream&); internal::Stack<StackAllocator>& stack_; SizeType length_; }; // Parse string and generate String event. Different code paths for kParseInsituFlag. template<unsigned parseFlags, typename InputStream, typename Handler> void ParseString(InputStream& is, Handler& handler, bool isKey = false) { internal::StreamLocalCopy<InputStream> copy(is); InputStream& s(copy.s); RAPIDJSON_ASSERT(s.Peek() == '\"'); s.Take(); // Skip '\"' bool success = false; if (parseFlags & kParseInsituFlag) { typename InputStream::Ch *head = s.PutBegin(); ParseStringToStream<parseFlags, SourceEncoding, SourceEncoding>(s, s); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; size_t length = s.PutEnd(head) - 1; RAPIDJSON_ASSERT(length <= 0xFFFFFFFF); const typename TargetEncoding::Ch* const str = reinterpret_cast<typename TargetEncoding::Ch*>(head); success = (isKey ? handler.Key(str, SizeType(length), false) : handler.String(str, SizeType(length), false)); } else { StackStream<typename TargetEncoding::Ch> stackStream(stack_); ParseStringToStream<parseFlags, SourceEncoding, TargetEncoding>(s, stackStream); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; SizeType length = static_cast<SizeType>(stackStream.Length()) - 1; const typename TargetEncoding::Ch* const str = stackStream.Pop(); success = (isKey ? handler.Key(str, length, true) : handler.String(str, length, true)); } if (RAPIDJSON_UNLIKELY(!success)) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, s.Tell()); } // Parse string to an output is // This function handles the prefix/suffix double quotes, escaping, and optional encoding validation. template<unsigned parseFlags, typename SEncoding, typename TEncoding, typename InputStream, typename OutputStream> RAPIDJSON_FORCEINLINE void ParseStringToStream(InputStream& is, OutputStream& os) { //!@cond RAPIDJSON_HIDDEN_FROM_DOXYGEN #define Z16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 static const char escape[256] = { Z16, Z16, 0, 0,'\"', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'/', Z16, Z16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'\\', 0, 0, 0, 0, 0,'\b', 0, 0, 0,'\f', 0, 0, 0, 0, 0, 0, 0,'\n', 0, 0, 0,'\r', 0,'\t', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16 }; #undef Z16 //!@endcond for (;;) { // Scan and copy string before "\\\"" or < 0x20. This is an optional optimzation. if (!(parseFlags & kParseValidateEncodingFlag)) ScanCopyUnescapedString(is, os); Ch c = is.Peek(); if (RAPIDJSON_UNLIKELY(c == '\\')) { // Escape size_t escapeOffset = is.Tell(); // For invalid escaping, report the inital '\\' as error offset is.Take(); Ch e = is.Peek(); if ((sizeof(Ch) == 1 || unsigned(e) < 256) && RAPIDJSON_LIKELY(escape[static_cast<unsigned char>(e)])) { is.Take(); os.Put(static_cast<typename TEncoding::Ch>(escape[static_cast<unsigned char>(e)])); } else if (RAPIDJSON_LIKELY(e == 'u')) { // Unicode is.Take(); unsigned codepoint = ParseHex4(is, escapeOffset); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (RAPIDJSON_UNLIKELY(codepoint >= 0xD800 && codepoint <= 0xDBFF)) { // Handle UTF-16 surrogate pair if (RAPIDJSON_UNLIKELY(!Consume(is, '\\') || !Consume(is, 'u'))) RAPIDJSON_PARSE_ERROR(kParseErrorStringUnicodeSurrogateInvalid, escapeOffset); unsigned codepoint2 = ParseHex4(is, escapeOffset); RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID; if (RAPIDJSON_UNLIKELY(codepoint2 < 0xDC00 || codepoint2 > 0xDFFF)) RAPIDJSON_PARSE_ERROR(kParseErrorStringUnicodeSurrogateInvalid, escapeOffset); codepoint = (((codepoint - 0xD800) << 10) | (codepoint2 - 0xDC00)) + 0x10000; } TEncoding::Encode(os, codepoint); } else RAPIDJSON_PARSE_ERROR(kParseErrorStringEscapeInvalid, escapeOffset); } else if (RAPIDJSON_UNLIKELY(c == '"')) { // Closing double quote is.Take(); os.Put('\0'); // null-terminate the string return; } else if (RAPIDJSON_UNLIKELY(static_cast<unsigned>(c) < 0x20)) { // RFC 4627: unescaped = %x20-21 / %x23-5B / %x5D-10FFFF if (c == '\0') RAPIDJSON_PARSE_ERROR(kParseErrorStringMissQuotationMark, is.Tell()); else RAPIDJSON_PARSE_ERROR(kParseErrorStringEscapeInvalid, is.Tell()); } else { size_t offset = is.Tell(); if (RAPIDJSON_UNLIKELY((parseFlags & kParseValidateEncodingFlag ? !Transcoder<SEncoding, TEncoding>::Validate(is, os) : !Transcoder<SEncoding, TEncoding>::Transcode(is, os)))) RAPIDJSON_PARSE_ERROR(kParseErrorStringInvalidEncoding, offset); } } } template<typename InputStream, typename OutputStream> static RAPIDJSON_FORCEINLINE void ScanCopyUnescapedString(InputStream&, OutputStream&) { // Do nothing for generic version } #if defined(RAPIDJSON_SSE2) || defined(RAPIDJSON_SSE42) // StringStream -> StackStream<char> static RAPIDJSON_FORCEINLINE void ScanCopyUnescapedString(StringStream& is, StackStream<char>& os) { const char* p = is.src_; // Scan one by one until alignment (unaligned load may cross page boundary and cause crash) const char* nextAligned = reinterpret_cast<const char*>((reinterpret_cast<size_t>(p) + 15) & static_cast<size_t>(~15)); while (p != nextAligned) if (RAPIDJSON_UNLIKELY(*p == '\"') || RAPIDJSON_UNLIKELY(*p == '\\') || RAPIDJSON_UNLIKELY(static_cast<unsigned>(*p) < 0x20)) { is.src_ = p; return; } else os.Put(*p++); // The rest of string using SIMD static const char dquote[16] = { '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"' }; static const char bslash[16] = { '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\' }; static const char space[16] = { 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19 }; const __m128i dq = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&dquote[0])); const __m128i bs = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&bslash[0])); const __m128i sp = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&space[0])); for (;; p += 16) { const __m128i s = _mm_load_si128(reinterpret_cast<const __m128i *>(p)); const __m128i t1 = _mm_cmpeq_epi8(s, dq); const __m128i t2 = _mm_cmpeq_epi8(s, bs); const __m128i t3 = _mm_cmpeq_epi8(_mm_max_epu8(s, sp), sp); // s < 0x20 <=> max(s, 0x19) == 0x19 const __m128i x = _mm_or_si128(_mm_or_si128(t1, t2), t3); unsigned short r = static_cast<unsigned short>(_mm_movemask_epi8(x)); if (RAPIDJSON_UNLIKELY(r != 0)) { // some of characters is escaped SizeType length; #ifdef _MSC_VER // Find the index of first escaped unsigned long offset; _BitScanForward(&offset, r); length = offset; #else length = static_cast<SizeType>(__builtin_ffs(r) - 1); #endif char* q = reinterpret_cast<char*>(os.Push(length)); for (size_t i = 0; i < length; i++) q[i] = p[i]; p += length; break; } _mm_storeu_si128(reinterpret_cast<__m128i *>(os.Push(16)), s); } is.src_ = p; } // InsituStringStream -> InsituStringStream static RAPIDJSON_FORCEINLINE void ScanCopyUnescapedString(InsituStringStream& is, InsituStringStream& os) { RAPIDJSON_ASSERT(&is == &os); (void)os; if (is.src_ == is.dst_) { SkipUnescapedString(is); return; } char* p = is.src_; char *q = is.dst_; // Scan one by one until alignment (unaligned load may cross page boundary and cause crash) const char* nextAligned = reinterpret_cast<const char*>((reinterpret_cast<size_t>(p) + 15) & static_cast<size_t>(~15)); while (p != nextAligned) if (RAPIDJSON_UNLIKELY(*p == '\"') || RAPIDJSON_UNLIKELY(*p == '\\') || RAPIDJSON_UNLIKELY(static_cast<unsigned>(*p) < 0x20)) { is.src_ = p; is.dst_ = q; return; } else *q++ = *p++; // The rest of string using SIMD static const char dquote[16] = { '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"' }; static const char bslash[16] = { '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\' }; static const char space[16] = { 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19 }; const __m128i dq = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&dquote[0])); const __m128i bs = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&bslash[0])); const __m128i sp = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&space[0])); for (;; p += 16, q += 16) { const __m128i s = _mm_load_si128(reinterpret_cast<const __m128i *>(p)); const __m128i t1 = _mm_cmpeq_epi8(s, dq); const __m128i t2 = _mm_cmpeq_epi8(s, bs); const __m128i t3 = _mm_cmpeq_epi8(_mm_max_epu8(s, sp), sp); // s < 0x20 <=> max(s, 0x19) == 0x19 const __m128i x = _mm_or_si128(_mm_or_si128(t1, t2), t3); unsigned short r = static_cast<unsigned short>(_mm_movemask_epi8(x)); if (RAPIDJSON_UNLIKELY(r != 0)) { // some of characters is escaped size_t length; #ifdef _MSC_VER // Find the index of first escaped unsigned long offset; _BitScanForward(&offset, r); length = offset; #else length = static_cast<size_t>(__builtin_ffs(r) - 1); #endif for (const char* pend = p + length; p != pend; ) *q++ = *p++; break; } _mm_storeu_si128(reinterpret_cast<__m128i *>(q), s); } is.src_ = p; is.dst_ = q; } // When read/write pointers are the same for insitu stream, just skip unescaped characters static RAPIDJSON_FORCEINLINE void SkipUnescapedString(InsituStringStream& is) { RAPIDJSON_ASSERT(is.src_ == is.dst_); char* p = is.src_; // Scan one by one until alignment (unaligned load may cross page boundary and cause crash) const char* nextAligned = reinterpret_cast<const char*>((reinterpret_cast<size_t>(p) + 15) & static_cast<size_t>(~15)); for (; p != nextAligned; p++) if (RAPIDJSON_UNLIKELY(*p == '\"') || RAPIDJSON_UNLIKELY(*p == '\\') || RAPIDJSON_UNLIKELY(static_cast<unsigned>(*p) < 0x20)) { is.src_ = is.dst_ = p; return; } // The rest of string using SIMD static const char dquote[16] = { '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"', '\"' }; static const char bslash[16] = { '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\', '\\' }; static const char space[16] = { 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19 }; const __m128i dq = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&dquote[0])); const __m128i bs = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&bslash[0])); const __m128i sp = _mm_loadu_si128(reinterpret_cast<const __m128i *>(&space[0])); for (;; p += 16) { const __m128i s = _mm_load_si128(reinterpret_cast<const __m128i *>(p)); const __m128i t1 = _mm_cmpeq_epi8(s, dq); const __m128i t2 = _mm_cmpeq_epi8(s, bs); const __m128i t3 = _mm_cmpeq_epi8(_mm_max_epu8(s, sp), sp); // s < 0x20 <=> max(s, 0x19) == 0x19 const __m128i x = _mm_or_si128(_mm_or_si128(t1, t2), t3); unsigned short r = static_cast<unsigned short>(_mm_movemask_epi8(x)); if (RAPIDJSON_UNLIKELY(r != 0)) { // some of characters is escaped size_t length; #ifdef _MSC_VER // Find the index of first escaped unsigned long offset; _BitScanForward(&offset, r); length = offset; #else length = static_cast<size_t>(__builtin_ffs(r) - 1); #endif p += length; break; } } is.src_ = is.dst_ = p; } #endif template<typename InputStream, bool backup, bool pushOnTake> class NumberStream; template<typename InputStream> class NumberStream<InputStream, false, false> { public: typedef typename InputStream::Ch Ch; NumberStream(GenericReader& reader, InputStream& s) : is(s) { (void)reader; } ~NumberStream() {} RAPIDJSON_FORCEINLINE Ch Peek() const { return is.Peek(); } RAPIDJSON_FORCEINLINE Ch TakePush() { return is.Take(); } RAPIDJSON_FORCEINLINE Ch Take() { return is.Take(); } RAPIDJSON_FORCEINLINE void Push(char) {} size_t Tell() { return is.Tell(); } size_t Length() { return 0; } const char* Pop() { return 0; } protected: NumberStream& operator=(const NumberStream&); InputStream& is; }; template<typename InputStream> class NumberStream<InputStream, true, false> : public NumberStream<InputStream, false, false> { typedef NumberStream<InputStream, false, false> Base; public: NumberStream(GenericReader& reader, InputStream& is) : Base(reader, is), stackStream(reader.stack_) {} ~NumberStream() {} RAPIDJSON_FORCEINLINE Ch TakePush() { stackStream.Put(static_cast<char>(Base::is.Peek())); return Base::is.Take(); } RAPIDJSON_FORCEINLINE void Push(char c) { stackStream.Put(c); } size_t Length() { return stackStream.Length(); } const char* Pop() { stackStream.Put('\0'); return stackStream.Pop(); } private: StackStream<char> stackStream; }; template<typename InputStream> class NumberStream<InputStream, true, true> : public NumberStream<InputStream, true, false> { typedef NumberStream<InputStream, true, false> Base; public: NumberStream(GenericReader& reader, InputStream& is) : Base(reader, is) {} ~NumberStream() {} RAPIDJSON_FORCEINLINE Ch Take() { return Base::TakePush(); } }; template<unsigned parseFlags, typename InputStream, typename Handler> void ParseNumber(InputStream& is, Handler& handler) { internal::StreamLocalCopy<InputStream> copy(is); NumberStream<InputStream, ((parseFlags & kParseNumbersAsStringsFlag) != 0) ? ((parseFlags & kParseInsituFlag) == 0) : ((parseFlags & kParseFullPrecisionFlag) != 0), (parseFlags & kParseNumbersAsStringsFlag) != 0 && (parseFlags & kParseInsituFlag) == 0> s(*this, copy.s); size_t startOffset = s.Tell(); double d = 0.0; bool useNanOrInf = false; // Parse minus bool minus = Consume(s, '-'); // Parse int: zero / ( digit1-9 *DIGIT ) unsigned i = 0; uint64_t i64 = 0; bool use64bit = false; int significandDigit = 0; if (RAPIDJSON_UNLIKELY(s.Peek() == '0')) { i = 0; s.TakePush(); } else if (RAPIDJSON_LIKELY(s.Peek() >= '1' && s.Peek() <= '9')) { i = static_cast<unsigned>(s.TakePush() - '0'); if (minus) while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (RAPIDJSON_UNLIKELY(i >= 214748364)) { // 2^31 = 2147483648 if (RAPIDJSON_LIKELY(i != 214748364 || s.Peek() > '8')) { i64 = i; use64bit = true; break; } } i = i * 10 + static_cast<unsigned>(s.TakePush() - '0'); significandDigit++; } else while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (RAPIDJSON_UNLIKELY(i >= 429496729)) { // 2^32 - 1 = 4294967295 if (RAPIDJSON_LIKELY(i != 429496729 || s.Peek() > '5')) { i64 = i; use64bit = true; break; } } i = i * 10 + static_cast<unsigned>(s.TakePush() - '0'); significandDigit++; } } // Parse NaN or Infinity here else if ((parseFlags & kParseNanAndInfFlag) && RAPIDJSON_LIKELY((s.Peek() == 'I' || s.Peek() == 'N'))) { useNanOrInf = true; if (RAPIDJSON_LIKELY(Consume(s, 'N') && Consume(s, 'a') && Consume(s, 'N'))) { d = std::numeric_limits<double>::quiet_NaN(); } else if (RAPIDJSON_LIKELY(Consume(s, 'I') && Consume(s, 'n') && Consume(s, 'f'))) { d = (minus ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity()); if (RAPIDJSON_UNLIKELY(s.Peek() == 'i' && !(Consume(s, 'i') && Consume(s, 'n') && Consume(s, 'i') && Consume(s, 't') && Consume(s, 'y')))) RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, s.Tell()); } else RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, s.Tell()); } else RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, s.Tell()); // Parse 64bit int bool useDouble = false; if (use64bit) { if (minus) while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (RAPIDJSON_UNLIKELY(i64 >= RAPIDJSON_UINT64_C2(0x0CCCCCCC, 0xCCCCCCCC))) // 2^63 = 9223372036854775808 if (RAPIDJSON_LIKELY(i64 != RAPIDJSON_UINT64_C2(0x0CCCCCCC, 0xCCCCCCCC) || s.Peek() > '8')) { d = static_cast<double>(i64); useDouble = true; break; } i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0'); significandDigit++; } else while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (RAPIDJSON_UNLIKELY(i64 >= RAPIDJSON_UINT64_C2(0x19999999, 0x99999999))) // 2^64 - 1 = 18446744073709551615 if (RAPIDJSON_LIKELY(i64 != RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) || s.Peek() > '5')) { d = static_cast<double>(i64); useDouble = true; break; } i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0'); significandDigit++; } } // Force double for big integer if (useDouble) { while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (RAPIDJSON_UNLIKELY(d >= 1.7976931348623157e307)) // DBL_MAX / 10.0 RAPIDJSON_PARSE_ERROR(kParseErrorNumberTooBig, startOffset); d = d * 10 + (s.TakePush() - '0'); } } // Parse frac = decimal-point 1*DIGIT int expFrac = 0; size_t decimalPosition; if (Consume(s, '.')) { decimalPosition = s.Length(); if (RAPIDJSON_UNLIKELY(!(s.Peek() >= '0' && s.Peek() <= '9'))) RAPIDJSON_PARSE_ERROR(kParseErrorNumberMissFraction, s.Tell()); if (!useDouble) { #if RAPIDJSON_64BIT // Use i64 to store significand in 64-bit architecture if (!use64bit) i64 = i; while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (i64 > RAPIDJSON_UINT64_C2(0x1FFFFF, 0xFFFFFFFF)) // 2^53 - 1 for fast path break; else { i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0'); --expFrac; if (i64 != 0) significandDigit++; } } d = static_cast<double>(i64); #else // Use double to store significand in 32-bit architecture d = static_cast<double>(use64bit ? i64 : i); #endif useDouble = true; } while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { if (significandDigit < 17) { d = d * 10.0 + (s.TakePush() - '0'); --expFrac; if (RAPIDJSON_LIKELY(d > 0.0)) significandDigit++; } else s.TakePush(); } } else decimalPosition = s.Length(); // decimal position at the end of integer. // Parse exp = e [ minus / plus ] 1*DIGIT int exp = 0; if (Consume(s, 'e') || Consume(s, 'E')) { if (!useDouble) { d = static_cast<double>(use64bit ? i64 : i); useDouble = true; } bool expMinus = false; if (Consume(s, '+')) ; else if (Consume(s, '-')) expMinus = true; if (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { exp = static_cast<int>(s.Take() - '0'); if (expMinus) { while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { exp = exp * 10 + static_cast<int>(s.Take() - '0'); if (exp >= 214748364) { // Issue #313: prevent overflow exponent while (RAPIDJSON_UNLIKELY(s.Peek() >= '0' && s.Peek() <= '9')) // Consume the rest of exponent s.Take(); } } } else { // positive exp int maxExp = 308 - expFrac; while (RAPIDJSON_LIKELY(s.Peek() >= '0' && s.Peek() <= '9')) { exp = exp * 10 + static_cast<int>(s.Take() - '0'); if (RAPIDJSON_UNLIKELY(exp > maxExp)) RAPIDJSON_PARSE_ERROR(kParseErrorNumberTooBig, startOffset); } } } else RAPIDJSON_PARSE_ERROR(kParseErrorNumberMissExponent, s.Tell()); if (expMinus) exp = -exp; } // Finish parsing, call event according to the type of number. bool cont = true; if (parseFlags & kParseNumbersAsStringsFlag) { if (parseFlags & kParseInsituFlag) { s.Pop(); // Pop stack no matter if it will be used or not. typename InputStream::Ch* head = is.PutBegin(); const size_t length = s.Tell() - startOffset; RAPIDJSON_ASSERT(length <= 0xFFFFFFFF); // unable to insert the \0 character here, it will erase the comma after this number const typename TargetEncoding::Ch* const str = reinterpret_cast<typename TargetEncoding::Ch*>(head); cont = handler.RawNumber(str, SizeType(length), false); } else { SizeType numCharsToCopy = static_cast<SizeType>(s.Length()); StringStream srcStream(s.Pop()); StackStream<typename TargetEncoding::Ch> dstStream(stack_); while (numCharsToCopy--) { Transcoder<UTF8<>, TargetEncoding>::Transcode(srcStream, dstStream); } dstStream.Put('\0'); const typename TargetEncoding::Ch* str = dstStream.Pop(); const SizeType length = static_cast<SizeType>(dstStream.Length()) - 1; cont = handler.RawNumber(str, SizeType(length), true); } } else { size_t length = s.Length(); const char* decimal = s.Pop(); // Pop stack no matter if it will be used or not. if (useDouble) { int p = exp + expFrac; if (parseFlags & kParseFullPrecisionFlag) d = internal::StrtodFullPrecision(d, p, decimal, length, decimalPosition, exp); else d = internal::StrtodNormalPrecision(d, p); cont = handler.Double(minus ? -d : d); } else if (useNanOrInf) { cont = handler.Double(d); } else { if (use64bit) { if (minus) cont = handler.Int64(static_cast<int64_t>(~i64 + 1)); else cont = handler.Uint64(i64); } else { if (minus) cont = handler.Int(static_cast<int32_t>(~i + 1)); else cont = handler.Uint(i); } } } if (RAPIDJSON_UNLIKELY(!cont)) RAPIDJSON_PARSE_ERROR(kParseErrorTermination, startOffset); } // Parse any JSON value template<unsigned parseFlags, typename InputStream, typename Handler> void ParseValue(InputStream& is, Handler& handler) { switch (is.Peek()) { case 'n': ParseNull <parseFlags>(is, handler); break; case 't': ParseTrue <parseFlags>(is, handler); break; case 'f': ParseFalse <parseFlags>(is, handler); break; case '"': ParseString<parseFlags>(is, handler); break; case '{': ParseObject<parseFlags>(is, handler); break; case '[': ParseArray <parseFlags>(is, handler); break; default : ParseNumber<parseFlags>(is, handler); break; } } // Iterative Parsing // States enum IterativeParsingState { IterativeParsingStartState = 0, IterativeParsingFinishState, IterativeParsingErrorState, // Object states IterativeParsingObjectInitialState, IterativeParsingMemberKeyState, IterativeParsingKeyValueDelimiterState, IterativeParsingMemberValueState, IterativeParsingMemberDelimiterState, IterativeParsingObjectFinishState, // Array states IterativeParsingArrayInitialState, IterativeParsingElementState, IterativeParsingElementDelimiterState, IterativeParsingArrayFinishState, // Single value state IterativeParsingValueState }; enum { cIterativeParsingStateCount = IterativeParsingValueState + 1 }; // Tokens enum Token { LeftBracketToken = 0, RightBracketToken, LeftCurlyBracketToken, RightCurlyBracketToken, CommaToken, ColonToken, StringToken, FalseToken, TrueToken, NullToken, NumberToken, kTokenCount }; RAPIDJSON_FORCEINLINE Token Tokenize(Ch c) { //!@cond RAPIDJSON_HIDDEN_FROM_DOXYGEN #define N NumberToken #define N16 N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N // Maps from ASCII to Token static const unsigned char tokenMap[256] = { N16, // 00~0F N16, // 10~1F N, N, StringToken, N, N, N, N, N, N, N, N, N, CommaToken, N, N, N, // 20~2F N, N, N, N, N, N, N, N, N, N, ColonToken, N, N, N, N, N, // 30~3F N16, // 40~4F N, N, N, N, N, N, N, N, N, N, N, LeftBracketToken, N, RightBracketToken, N, N, // 50~5F N, N, N, N, N, N, FalseToken, N, N, N, N, N, N, N, NullToken, N, // 60~6F N, N, N, N, TrueToken, N, N, N, N, N, N, LeftCurlyBracketToken, N, RightCurlyBracketToken, N, N, // 70~7F N16, N16, N16, N16, N16, N16, N16, N16 // 80~FF }; #undef N #undef N16 //!@endcond if (sizeof(Ch) == 1 || static_cast<unsigned>(c) < 256) return static_cast<Token>(tokenMap[static_cast<unsigned char>(c)]); else return NumberToken; } RAPIDJSON_FORCEINLINE IterativeParsingState Predict(IterativeParsingState state, Token token) { // current state x one lookahead token -> new state static const char G[cIterativeParsingStateCount][kTokenCount] = { // Start { IterativeParsingArrayInitialState, // Left bracket IterativeParsingErrorState, // Right bracket IterativeParsingObjectInitialState, // Left curly bracket IterativeParsingErrorState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingValueState, // String IterativeParsingValueState, // False IterativeParsingValueState, // True IterativeParsingValueState, // Null IterativeParsingValueState // Number }, // Finish(sink state) { IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState }, // Error(sink state) { IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState }, // ObjectInitial { IterativeParsingErrorState, // Left bracket IterativeParsingErrorState, // Right bracket IterativeParsingErrorState, // Left curly bracket IterativeParsingObjectFinishState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingMemberKeyState, // String IterativeParsingErrorState, // False IterativeParsingErrorState, // True IterativeParsingErrorState, // Null IterativeParsingErrorState // Number }, // MemberKey { IterativeParsingErrorState, // Left bracket IterativeParsingErrorState, // Right bracket IterativeParsingErrorState, // Left curly bracket IterativeParsingErrorState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingKeyValueDelimiterState, // Colon IterativeParsingErrorState, // String IterativeParsingErrorState, // False IterativeParsingErrorState, // True IterativeParsingErrorState, // Null IterativeParsingErrorState // Number }, // KeyValueDelimiter { IterativeParsingArrayInitialState, // Left bracket(push MemberValue state) IterativeParsingErrorState, // Right bracket IterativeParsingObjectInitialState, // Left curly bracket(push MemberValue state) IterativeParsingErrorState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingMemberValueState, // String IterativeParsingMemberValueState, // False IterativeParsingMemberValueState, // True IterativeParsingMemberValueState, // Null IterativeParsingMemberValueState // Number }, // MemberValue { IterativeParsingErrorState, // Left bracket IterativeParsingErrorState, // Right bracket IterativeParsingErrorState, // Left curly bracket IterativeParsingObjectFinishState, // Right curly bracket IterativeParsingMemberDelimiterState, // Comma IterativeParsingErrorState, // Colon IterativeParsingErrorState, // String IterativeParsingErrorState, // False IterativeParsingErrorState, // True IterativeParsingErrorState, // Null IterativeParsingErrorState // Number }, // MemberDelimiter { IterativeParsingErrorState, // Left bracket IterativeParsingErrorState, // Right bracket IterativeParsingErrorState, // Left curly bracket IterativeParsingObjectFinishState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingMemberKeyState, // String IterativeParsingErrorState, // False IterativeParsingErrorState, // True IterativeParsingErrorState, // Null IterativeParsingErrorState // Number }, // ObjectFinish(sink state) { IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState }, // ArrayInitial { IterativeParsingArrayInitialState, // Left bracket(push Element state) IterativeParsingArrayFinishState, // Right bracket IterativeParsingObjectInitialState, // Left curly bracket(push Element state) IterativeParsingErrorState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingElementState, // String IterativeParsingElementState, // False IterativeParsingElementState, // True IterativeParsingElementState, // Null IterativeParsingElementState // Number }, // Element { IterativeParsingErrorState, // Left bracket IterativeParsingArrayFinishState, // Right bracket IterativeParsingErrorState, // Left curly bracket IterativeParsingErrorState, // Right curly bracket IterativeParsingElementDelimiterState, // Comma IterativeParsingErrorState, // Colon IterativeParsingErrorState, // String IterativeParsingErrorState, // False IterativeParsingErrorState, // True IterativeParsingErrorState, // Null IterativeParsingErrorState // Number }, // ElementDelimiter { IterativeParsingArrayInitialState, // Left bracket(push Element state) IterativeParsingArrayFinishState, // Right bracket IterativeParsingObjectInitialState, // Left curly bracket(push Element state) IterativeParsingErrorState, // Right curly bracket IterativeParsingErrorState, // Comma IterativeParsingErrorState, // Colon IterativeParsingElementState, // String IterativeParsingElementState, // False IterativeParsingElementState, // True IterativeParsingElementState, // Null IterativeParsingElementState // Number }, // ArrayFinish(sink state) { IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState }, // Single Value (sink state) { IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState, IterativeParsingErrorState } }; // End of G return static_cast<IterativeParsingState>(G[state][token]); } // Make an advance in the token stream and state based on the candidate destination state which was returned by Transit(). // May return a new state on state pop. template <unsigned parseFlags, typename InputStream, typename Handler> RAPIDJSON_FORCEINLINE IterativeParsingState Transit(IterativeParsingState src, Token token, IterativeParsingState dst, InputStream& is, Handler& handler) { (void)token; switch (dst) { case IterativeParsingErrorState: return dst; case IterativeParsingObjectInitialState: case IterativeParsingArrayInitialState: { // Push the state(Element or MemeberValue) if we are nested in another array or value of member. // In this way we can get the correct state on ObjectFinish or ArrayFinish by frame pop. IterativeParsingState n = src; if (src == IterativeParsingArrayInitialState || src == IterativeParsingElementDelimiterState) n = IterativeParsingElementState; else if (src == IterativeParsingKeyValueDelimiterState) n = IterativeParsingMemberValueState; // Push current state. *stack_.template Push<SizeType>(1) = n; // Initialize and push the member/element count. *stack_.template Push<SizeType>(1) = 0; // Call handler bool hr = (dst == IterativeParsingObjectInitialState) ? handler.StartObject() : handler.StartArray(); // On handler short circuits the parsing. if (!hr) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorTermination, is.Tell()); return IterativeParsingErrorState; } else { is.Take(); return dst; } } case IterativeParsingMemberKeyState: ParseString<parseFlags>(is, handler, true); if (HasParseError()) return IterativeParsingErrorState; else return dst; case IterativeParsingKeyValueDelimiterState: RAPIDJSON_ASSERT(token == ColonToken); is.Take(); return dst; case IterativeParsingMemberValueState: // Must be non-compound value. Or it would be ObjectInitial or ArrayInitial state. ParseValue<parseFlags>(is, handler); if (HasParseError()) { return IterativeParsingErrorState; } return dst; case IterativeParsingElementState: // Must be non-compound value. Or it would be ObjectInitial or ArrayInitial state. ParseValue<parseFlags>(is, handler); if (HasParseError()) { return IterativeParsingErrorState; } return dst; case IterativeParsingMemberDelimiterState: case IterativeParsingElementDelimiterState: is.Take(); // Update member/element count. *stack_.template Top<SizeType>() = *stack_.template Top<SizeType>() + 1; return dst; case IterativeParsingObjectFinishState: { // Transit from delimiter is only allowed when trailing commas are enabled if (!(parseFlags & kParseTrailingCommasFlag) && src == IterativeParsingMemberDelimiterState) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorObjectMissName, is.Tell()); return IterativeParsingErrorState; } // Get member count. SizeType c = *stack_.template Pop<SizeType>(1); // If the object is not empty, count the last member. if (src == IterativeParsingMemberValueState) ++c; // Restore the state. IterativeParsingState n = static_cast<IterativeParsingState>(*stack_.template Pop<SizeType>(1)); // Transit to Finish state if this is the topmost scope. if (n == IterativeParsingStartState) n = IterativeParsingFinishState; // Call handler bool hr = handler.EndObject(c); // On handler short circuits the parsing. if (!hr) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorTermination, is.Tell()); return IterativeParsingErrorState; } else { is.Take(); return n; } } case IterativeParsingArrayFinishState: { // Transit from delimiter is only allowed when trailing commas are enabled if (!(parseFlags & kParseTrailingCommasFlag) && src == IterativeParsingElementDelimiterState) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorValueInvalid, is.Tell()); return IterativeParsingErrorState; } // Get element count. SizeType c = *stack_.template Pop<SizeType>(1); // If the array is not empty, count the last element. if (src == IterativeParsingElementState) ++c; // Restore the state. IterativeParsingState n = static_cast<IterativeParsingState>(*stack_.template Pop<SizeType>(1)); // Transit to Finish state if this is the topmost scope. if (n == IterativeParsingStartState) n = IterativeParsingFinishState; // Call handler bool hr = handler.EndArray(c); // On handler short circuits the parsing. if (!hr) { RAPIDJSON_PARSE_ERROR_NORETURN(kParseErrorTermination, is.Tell()); return IterativeParsingErrorState; } else { is.Take(); return n; } } default: // This branch is for IterativeParsingValueState actually. // Use `default:` rather than // `case IterativeParsingValueState:` is for code coverage. // The IterativeParsingStartState is not enumerated in this switch-case. // It is impossible for that case. And it can be caught by following assertion. // The IterativeParsingFinishState is not enumerated in this switch-case either. // It is a "derivative" state which cannot triggered from Predict() directly. // Therefore it cannot happen here. And it can be caught by following assertion. RAPIDJSON_ASSERT(dst == IterativeParsingValueState); // Must be non-compound value. Or it would be ObjectInitial or ArrayInitial state. ParseValue<parseFlags>(is, handler); if (HasParseError()) { return IterativeParsingErrorState; } return IterativeParsingFinishState; } } template <typename InputStream> void HandleError(IterativeParsingState src, InputStream& is) { if (HasParseError()) { // Error flag has been set. return; } switch (src) { case IterativeParsingStartState: RAPIDJSON_PARSE_ERROR(kParseErrorDocumentEmpty, is.Tell()); return; case IterativeParsingFinishState: RAPIDJSON_PARSE_ERROR(kParseErrorDocumentRootNotSingular, is.Tell()); return; case IterativeParsingObjectInitialState: case IterativeParsingMemberDelimiterState: RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissName, is.Tell()); return; case IterativeParsingMemberKeyState: RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissColon, is.Tell()); return; case IterativeParsingMemberValueState: RAPIDJSON_PARSE_ERROR(kParseErrorObjectMissCommaOrCurlyBracket, is.Tell()); return; case IterativeParsingKeyValueDelimiterState: case IterativeParsingArrayInitialState: case IterativeParsingElementDelimiterState: RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, is.Tell()); return; default: RAPIDJSON_ASSERT(src == IterativeParsingElementState); RAPIDJSON_PARSE_ERROR(kParseErrorArrayMissCommaOrSquareBracket, is.Tell()); return; } } template <unsigned parseFlags, typename InputStream, typename Handler> ParseResult IterativeParse(InputStream& is, Handler& handler) { parseResult_.Clear(); ClearStackOnExit scope(*this); IterativeParsingState state = IterativeParsingStartState; SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); while (is.Peek() != '\0') { Token t = Tokenize(is.Peek()); IterativeParsingState n = Predict(state, t); IterativeParsingState d = Transit<parseFlags>(state, t, n, is, handler); if (d == IterativeParsingErrorState) { HandleError(state, is); break; } state = d; // Do not further consume streams if a root JSON has been parsed. if ((parseFlags & kParseStopWhenDoneFlag) && state == IterativeParsingFinishState) break; SkipWhitespaceAndComments<parseFlags>(is); RAPIDJSON_PARSE_ERROR_EARLY_RETURN(parseResult_); } // Handle the end of file. if (state != IterativeParsingFinishState) HandleError(state, is); return parseResult_; } static const size_t kDefaultStackCapacity = 256; //!< Default stack capacity in bytes for storing a single decoded string. internal::Stack<StackAllocator> stack_; //!< A stack for storing decoded string temporarily during non-destructive parsing. ParseResult parseResult_; }; // class GenericReader //! Reader with UTF8 encoding and default allocator. typedef GenericReader<UTF8<>, UTF8<> > Reader; RAPIDJSON_NAMESPACE_END #ifdef __clang__ RAPIDJSON_DIAG_POP #endif #ifdef __GNUC__ RAPIDJSON_DIAG_POP #endif #ifdef _MSC_VER RAPIDJSON_DIAG_POP #endif #endif // RAPIDJSON_READER_H_