DeepCover Embedded Security in IoT: Public-key Secured Data Paths
Dependencies: MaximInterface
The MAXREFDES155# is an internet-of-things (IoT) embedded-security reference design, built to authenticate and control a sensing node using elliptic-curve-based public-key cryptography with control and notification from a web server.
The hardware includes an ARM® mbed™ shield and attached sensor endpoint. The shield contains a DS2476 DeepCover® ECDSA/SHA-2 coprocessor, Wifi communication, LCD push-button controls, and status LEDs. The sensor endpoint is attached to the shield using a 300mm cable and contains a DS28C36 DeepCover ECDSA/SHA-2 authenticator, IR-thermal sensor, and aiming laser for the IR sensor. The MAXREFDES155# is equipped with a standard Arduino® form-factor shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The combination of these two devices represent an IoT device. Communication to the web server is accomplished with the shield Wifi circuitry. Communication from the shield to the attached sensor module is accomplished over I2C . The sensor module represents an IoT endpoint that generates small data with a requirement for message authenticity/integrity and secure on/off operational control.
The design is hierarchical with each mbed platform and shield communicating data from the sensor node to a web server that maintains a centralized log and dispatches notifications as necessary. The simplicity of this design enables rapid integration into any star-topology IoT network to provide security with the low overhead and cost provided by the ECDSA-P256 asymmetric-key and SHA-256 symmetric-key algorithms.
More information about the MAXREFDES155# is available on the Maxim Integrated website.
rapidjson/internal/strtod.h
- Committer:
- IanBenzMaxim
- Date:
- 2017-02-24
- Revision:
- 0:33d4e66780c0
File content as of revision 0:33d4e66780c0:
// Tencent is pleased to support the open source community by making RapidJSON available. // // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. // // Licensed under the MIT License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // http://opensource.org/licenses/MIT // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #ifndef RAPIDJSON_STRTOD_ #define RAPIDJSON_STRTOD_ #include "ieee754.h" #include "biginteger.h" #include "diyfp.h" #include "pow10.h" RAPIDJSON_NAMESPACE_BEGIN namespace internal { inline double FastPath(double significand, int exp) { if (exp < -308) return 0.0; else if (exp >= 0) return significand * internal::Pow10(exp); else return significand / internal::Pow10(-exp); } inline double StrtodNormalPrecision(double d, int p) { if (p < -308) { // Prevent expSum < -308, making Pow10(p) = 0 d = FastPath(d, -308); d = FastPath(d, p + 308); } else d = FastPath(d, p); return d; } template <typename T> inline T Min3(T a, T b, T c) { T m = a; if (m > b) m = b; if (m > c) m = c; return m; } inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp) { const Double db(b); const uint64_t bInt = db.IntegerSignificand(); const int bExp = db.IntegerExponent(); const int hExp = bExp - 1; int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0; // Adjust for decimal exponent if (dExp >= 0) { dS_Exp2 += dExp; dS_Exp5 += dExp; } else { bS_Exp2 -= dExp; bS_Exp5 -= dExp; hS_Exp2 -= dExp; hS_Exp5 -= dExp; } // Adjust for binary exponent if (bExp >= 0) bS_Exp2 += bExp; else { dS_Exp2 -= bExp; hS_Exp2 -= bExp; } // Adjust for half ulp exponent if (hExp >= 0) hS_Exp2 += hExp; else { dS_Exp2 -= hExp; bS_Exp2 -= hExp; } // Remove common power of two factor from all three scaled values int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2); dS_Exp2 -= common_Exp2; bS_Exp2 -= common_Exp2; hS_Exp2 -= common_Exp2; BigInteger dS = d; dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<unsigned>(dS_Exp2); BigInteger bS(bInt); bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<unsigned>(bS_Exp2); BigInteger hS(1); hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<unsigned>(hS_Exp2); BigInteger delta(0); dS.Difference(bS, &delta); return delta.Compare(hS); } inline bool StrtodFast(double d, int p, double* result) { // Use fast path for string-to-double conversion if possible // see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ if (p > 22 && p < 22 + 16) { // Fast Path Cases In Disguise d *= internal::Pow10(p - 22); p = 22; } if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1 *result = FastPath(d, p); return true; } else return false; } // Compute an approximation and see if it is within 1/2 ULP inline bool StrtodDiyFp(const char* decimals, size_t length, size_t decimalPosition, int exp, double* result) { uint64_t significand = 0; size_t i = 0; // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999 for (; i < length; i++) { if (significand > RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) || (significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5')) break; significand = significand * 10u + static_cast<unsigned>(decimals[i] - '0'); } if (i < length && decimals[i] >= '5') // Rounding significand++; size_t remaining = length - i; const unsigned kUlpShift = 3; const unsigned kUlp = 1 << kUlpShift; int64_t error = (remaining == 0) ? 0 : kUlp / 2; DiyFp v(significand, 0); v = v.Normalize(); error <<= -v.e; const int dExp = static_cast<int>(decimalPosition) - static_cast<int>(i) + exp; int actualExp; DiyFp cachedPower = GetCachedPower10(dExp, &actualExp); if (actualExp != dExp) { static const DiyFp kPow10[] = { DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 00000000), -60), // 10^1 DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 00000000), -57), // 10^2 DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 00000000), -54), // 10^3 DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 00000000), -50), // 10^4 DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 00000000), -47), // 10^5 DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 00000000), -44), // 10^6 DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 00000000), -40) // 10^7 }; int adjustment = dExp - actualExp - 1; RAPIDJSON_ASSERT(adjustment >= 0 && adjustment < 7); v = v * kPow10[adjustment]; if (length + static_cast<unsigned>(adjustment)> 19u) // has more digits than decimal digits in 64-bit error += kUlp / 2; } v = v * cachedPower; error += kUlp + (error == 0 ? 0 : 1); const int oldExp = v.e; v = v.Normalize(); error <<= oldExp - v.e; const unsigned effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e); unsigned precisionSize = 64 - effectiveSignificandSize; if (precisionSize + kUlpShift >= 64) { unsigned scaleExp = (precisionSize + kUlpShift) - 63; v.f >>= scaleExp; v.e += scaleExp; error = (error >> scaleExp) + 1 + static_cast<int>(kUlp); precisionSize -= scaleExp; } DiyFp rounded(v.f >> precisionSize, v.e + static_cast<int>(precisionSize)); const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp; const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp; if (precisionBits >= halfWay + static_cast<unsigned>(error)) { rounded.f++; if (rounded.f & (DiyFp::kDpHiddenBit << 1)) { // rounding overflows mantissa (issue #340) rounded.f >>= 1; rounded.e++; } } *result = rounded.ToDouble(); return halfWay - static_cast<unsigned>(error) >= precisionBits || precisionBits >= halfWay + static_cast<unsigned>(error); } inline double StrtodBigInteger(double approx, const char* decimals, size_t length, size_t decimalPosition, int exp) { const BigInteger dInt(decimals, length); const int dExp = static_cast<int>(decimalPosition) - static_cast<int>(length) + exp; Double a(approx); int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp); if (cmp < 0) return a.Value(); // within half ULP else if (cmp == 0) { // Round towards even if (a.Significand() & 1) return a.NextPositiveDouble(); else return a.Value(); } else // adjustment return a.NextPositiveDouble(); } inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) { RAPIDJSON_ASSERT(d >= 0.0); RAPIDJSON_ASSERT(length >= 1); double result; if (StrtodFast(d, p, &result)) return result; // Trim leading zeros while (*decimals == '0' && length > 1) { length--; decimals++; decimalPosition--; } // Trim trailing zeros while (decimals[length - 1] == '0' && length > 1) { length--; decimalPosition--; exp++; } // Trim right-most digits const int kMaxDecimalDigit = 780; if (static_cast<int>(length) > kMaxDecimalDigit) { int delta = (static_cast<int>(length) - kMaxDecimalDigit); exp += delta; decimalPosition -= static_cast<unsigned>(delta); length = kMaxDecimalDigit; } // If too small, underflow to zero if (int(length) + exp < -324) return 0.0; if (StrtodDiyFp(decimals, length, decimalPosition, exp, &result)) return result; // Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison return StrtodBigInteger(result, decimals, length, decimalPosition, exp); } } // namespace internal RAPIDJSON_NAMESPACE_END #endif // RAPIDJSON_STRTOD_