DeepCover Embedded Security in IoT: Public-key Secured Data Paths

Dependencies:   MaximInterface

The MAXREFDES155# is an internet-of-things (IoT) embedded-security reference design, built to authenticate and control a sensing node using elliptic-curve-based public-key cryptography with control and notification from a web server.

The hardware includes an ARM® mbed™ shield and attached sensor endpoint. The shield contains a DS2476 DeepCover® ECDSA/SHA-2 coprocessor, Wifi communication, LCD push-button controls, and status LEDs. The sensor endpoint is attached to the shield using a 300mm cable and contains a DS28C36 DeepCover ECDSA/SHA-2 authenticator, IR-thermal sensor, and aiming laser for the IR sensor. The MAXREFDES155# is equipped with a standard Arduino® form-factor shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The combination of these two devices represent an IoT device. Communication to the web server is accomplished with the shield Wifi circuitry. Communication from the shield to the attached sensor module is accomplished over I2C . The sensor module represents an IoT endpoint that generates small data with a requirement for message authenticity/integrity and secure on/off operational control.

The design is hierarchical with each mbed platform and shield communicating data from the sensor node to a web server that maintains a centralized log and dispatches notifications as necessary. The simplicity of this design enables rapid integration into any star-topology IoT network to provide security with the low overhead and cost provided by the ECDSA-P256 asymmetric-key and SHA-256 symmetric-key algorithms.

More information about the MAXREFDES155# is available on the Maxim Integrated website.

rapidjson/internal/biginteger.h

Committer:
IanBenzMaxim
Date:
2017-02-24
Revision:
0:33d4e66780c0

File content as of revision 0:33d4e66780c0:

// Tencent is pleased to support the open source community by making RapidJSON available.
// 
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software distributed 
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
// CONDITIONS OF ANY KIND, either express or implied. See the License for the 
// specific language governing permissions and limitations under the License.

#ifndef RAPIDJSON_BIGINTEGER_H_
#define RAPIDJSON_BIGINTEGER_H_

#include "../rapidjson.h"

#if defined(_MSC_VER) && defined(_M_AMD64)
#include <intrin.h> // for _umul128
#pragma intrinsic(_umul128)
#endif

RAPIDJSON_NAMESPACE_BEGIN
namespace internal {

class BigInteger {
public:
    typedef uint64_t Type;

    BigInteger(const BigInteger& rhs) : count_(rhs.count_) {
        std::memcpy(digits_, rhs.digits_, count_ * sizeof(Type));
    }

    explicit BigInteger(uint64_t u) : count_(1) {
        digits_[0] = u;
    }

    BigInteger(const char* decimals, size_t length) : count_(1) {
        RAPIDJSON_ASSERT(length > 0);
        digits_[0] = 0;
        size_t i = 0;
        const size_t kMaxDigitPerIteration = 19;  // 2^64 = 18446744073709551616 > 10^19
        while (length >= kMaxDigitPerIteration) {
            AppendDecimal64(decimals + i, decimals + i + kMaxDigitPerIteration);
            length -= kMaxDigitPerIteration;
            i += kMaxDigitPerIteration;
        }

        if (length > 0)
            AppendDecimal64(decimals + i, decimals + i + length);
    }
    
    BigInteger& operator=(const BigInteger &rhs)
    {
        if (this != &rhs) {
            count_ = rhs.count_;
            std::memcpy(digits_, rhs.digits_, count_ * sizeof(Type));
        }
        return *this;
    }
    
    BigInteger& operator=(uint64_t u) {
        digits_[0] = u;            
        count_ = 1;
        return *this;
    }

    BigInteger& operator+=(uint64_t u) {
        Type backup = digits_[0];
        digits_[0] += u;
        for (size_t i = 0; i < count_ - 1; i++) {
            if (digits_[i] >= backup)
                return *this; // no carry
            backup = digits_[i + 1];
            digits_[i + 1] += 1;
        }

        // Last carry
        if (digits_[count_ - 1] < backup)
            PushBack(1);

        return *this;
    }

    BigInteger& operator*=(uint64_t u) {
        if (u == 0) return *this = 0;
        if (u == 1) return *this;
        if (*this == 1) return *this = u;

        uint64_t k = 0;
        for (size_t i = 0; i < count_; i++) {
            uint64_t hi;
            digits_[i] = MulAdd64(digits_[i], u, k, &hi);
            k = hi;
        }
        
        if (k > 0)
            PushBack(k);

        return *this;
    }

    BigInteger& operator*=(uint32_t u) {
        if (u == 0) return *this = 0;
        if (u == 1) return *this;
        if (*this == 1) return *this = u;

        uint64_t k = 0;
        for (size_t i = 0; i < count_; i++) {
            const uint64_t c = digits_[i] >> 32;
            const uint64_t d = digits_[i] & 0xFFFFFFFF;
            const uint64_t uc = u * c;
            const uint64_t ud = u * d;
            const uint64_t p0 = ud + k;
            const uint64_t p1 = uc + (p0 >> 32);
            digits_[i] = (p0 & 0xFFFFFFFF) | (p1 << 32);
            k = p1 >> 32;
        }
        
        if (k > 0)
            PushBack(k);

        return *this;
    }

    BigInteger& operator<<=(size_t shift) {
        if (IsZero() || shift == 0) return *this;

        size_t offset = shift / kTypeBit;
        size_t interShift = shift % kTypeBit;
        RAPIDJSON_ASSERT(count_ + offset <= kCapacity);

        if (interShift == 0) {
            std::memmove(&digits_[count_ - 1 + offset], &digits_[count_ - 1], count_ * sizeof(Type));
            count_ += offset;
        }
        else {
            digits_[count_] = 0;
            for (size_t i = count_; i > 0; i--)
                digits_[i + offset] = (digits_[i] << interShift) | (digits_[i - 1] >> (kTypeBit - interShift));
            digits_[offset] = digits_[0] << interShift;
            count_ += offset;
            if (digits_[count_])
                count_++;
        }

        std::memset(digits_, 0, offset * sizeof(Type));

        return *this;
    }

    bool operator==(const BigInteger& rhs) const {
        return count_ == rhs.count_ && std::memcmp(digits_, rhs.digits_, count_ * sizeof(Type)) == 0;
    }

    bool operator==(const Type rhs) const {
        return count_ == 1 && digits_[0] == rhs;
    }

    BigInteger& MultiplyPow5(unsigned exp) {
        static const uint32_t kPow5[12] = {
            5,
            5 * 5,
            5 * 5 * 5,
            5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
        };
        if (exp == 0) return *this;
        for (; exp >= 27; exp -= 27) *this *= RAPIDJSON_UINT64_C2(0X6765C793, 0XFA10079D); // 5^27
        for (; exp >= 13; exp -= 13) *this *= static_cast<uint32_t>(1220703125u); // 5^13
        if (exp > 0)                 *this *= kPow5[exp - 1];
        return *this;
    }

    // Compute absolute difference of this and rhs.
    // Assume this != rhs
    bool Difference(const BigInteger& rhs, BigInteger* out) const {
        int cmp = Compare(rhs);
        RAPIDJSON_ASSERT(cmp != 0);
        const BigInteger *a, *b;  // Makes a > b
        bool ret;
        if (cmp < 0) { a = &rhs; b = this; ret = true; }
        else         { a = this; b = &rhs; ret = false; }

        Type borrow = 0;
        for (size_t i = 0; i < a->count_; i++) {
            Type d = a->digits_[i] - borrow;
            if (i < b->count_)
                d -= b->digits_[i];
            borrow = (d > a->digits_[i]) ? 1 : 0;
            out->digits_[i] = d;
            if (d != 0)
                out->count_ = i + 1;
        }

        return ret;
    }

    int Compare(const BigInteger& rhs) const {
        if (count_ != rhs.count_)
            return count_ < rhs.count_ ? -1 : 1;

        for (size_t i = count_; i-- > 0;)
            if (digits_[i] != rhs.digits_[i])
                return digits_[i] < rhs.digits_[i] ? -1 : 1;

        return 0;
    }

    size_t GetCount() const { return count_; }
    Type GetDigit(size_t index) const { RAPIDJSON_ASSERT(index < count_); return digits_[index]; }
    bool IsZero() const { return count_ == 1 && digits_[0] == 0; }

private:
    void AppendDecimal64(const char* begin, const char* end) {
        uint64_t u = ParseUint64(begin, end);
        if (IsZero())
            *this = u;
        else {
            unsigned exp = static_cast<unsigned>(end - begin);
            (MultiplyPow5(exp) <<= exp) += u;   // *this = *this * 10^exp + u
        }
    }

    void PushBack(Type digit) {
        RAPIDJSON_ASSERT(count_ < kCapacity);
        digits_[count_++] = digit;
    }

    static uint64_t ParseUint64(const char* begin, const char* end) {
        uint64_t r = 0;
        for (const char* p = begin; p != end; ++p) {
            RAPIDJSON_ASSERT(*p >= '0' && *p <= '9');
            r = r * 10u + static_cast<unsigned>(*p - '0');
        }
        return r;
    }

    // Assume a * b + k < 2^128
    static uint64_t MulAdd64(uint64_t a, uint64_t b, uint64_t k, uint64_t* outHigh) {
#if defined(_MSC_VER) && defined(_M_AMD64)
        uint64_t low = _umul128(a, b, outHigh) + k;
        if (low < k)
            (*outHigh)++;
        return low;
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
        __extension__ typedef unsigned __int128 uint128;
        uint128 p = static_cast<uint128>(a) * static_cast<uint128>(b);
        p += k;
        *outHigh = static_cast<uint64_t>(p >> 64);
        return static_cast<uint64_t>(p);
#else
        const uint64_t a0 = a & 0xFFFFFFFF, a1 = a >> 32, b0 = b & 0xFFFFFFFF, b1 = b >> 32;
        uint64_t x0 = a0 * b0, x1 = a0 * b1, x2 = a1 * b0, x3 = a1 * b1;
        x1 += (x0 >> 32); // can't give carry
        x1 += x2;
        if (x1 < x2)
            x3 += (static_cast<uint64_t>(1) << 32);
        uint64_t lo = (x1 << 32) + (x0 & 0xFFFFFFFF);
        uint64_t hi = x3 + (x1 >> 32);

        lo += k;
        if (lo < k)
            hi++;
        *outHigh = hi;
        return lo;
#endif
    }

    static const size_t kBitCount = 3328;  // 64bit * 54 > 10^1000
    static const size_t kCapacity = kBitCount / sizeof(Type);
    static const size_t kTypeBit = sizeof(Type) * 8;

    Type digits_[kCapacity];
    size_t count_;
};

} // namespace internal
RAPIDJSON_NAMESPACE_END

#endif // RAPIDJSON_BIGINTEGER_H_