Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: DriveConroller IMU MDD Mycan Odometer PID RotaryEncoder UART USS mbed
Fork of AR_MastarNode by
main.cpp
- Committer:
- TanakaTarou
- Date:
- 2018-08-09
- Revision:
- 4:9f74525eb37f
- Parent:
- 3:6b4adb4d7101
- Child:
- 5:7c5e07260e1e
File content as of revision 4:9f74525eb37f:
#include "mbed.h" #include "DriveController.h" #include "IMU.h" #include "MDD.h" #include "MDD2.h" #include "Mycan.h" #include "Odometer.h" #include "PID.h" #include "RotaryEncoder.h" #include "CSV.h" #include "SBUS.h" #include "USS.h" #include "hardwareConfig.h" //(X, Y, θ, speed, angle, injection, 補給昇降) float position[19][6] = {{0.0, 0.0, 0.0, 0, 90, 0},//初期位置 {-3.825, 0.0, 0.0, 0, 82, 0},//x移動, 角度変化 {-3.825, 20.0, 0.0, 0, 82, 0},//y移動 {-3.825, 20.0, 0.0, 35, 82, 0},//発射 {-3.825, 0.0, 0.0, 0, 90, 0},//y移動,角度戻す, P上昇 {-4.825, 0.0, 0.0, 0, 82, 0},//x移動, 角度変化, 下降&バットマン駆動 {-4.825, 20.0, 0.0, 0, 82, 0},//y移動 {-4.825, 20.0, 0.0, 35, 82, 0},//発射 {-4.825, 0.0, 0.0, 0, 90, 1},//y移動,角度戻す, P上昇 {-5.825, 0.0, 0.0, 0, 82, 0},//x移動, 角度変化, 下降&バットマン駆動 {-5.825, 20.0, 0.0, 0, 82, 0},//y移動 {-5.825, 20.0, 0.0, 35, 82, 0},//発射 {-5.825, 0.0, 0.0, 0, 90, 1},//y移動,角度戻す, P上昇 {-1.825, 0.0, 0.0, 0, 82, 0.0},//x移動, 角度変化, 下降&バットマン駆動 {-1.825, 20.0, 0.0, 0, 82, 0.0},//y移動 {-1.825, 20.0, 0.0, 18, 82, 0.0},//下段に発射 {-1.825, 20.0, 0.0, 0, 90, 0.0},//角度戻す, P上昇 {-1.825, 20.0, 0.0, 0, 85, 0.0},//角度変化, 下降&バットマン駆動 {-1.825, 20.0, 0.0, 18, 85, 0.0},//上段に発射 }; controller getPropoData(); bool isConvergetnceTops(); //x軸補正用 PID PID pidRobotX(2, 0, 0, 0.01, 0.3, &timer); float target_x = 0; //y軸補正用 PID PID pidRobotY(2, 0, 0, 0.01, 0.3, &timer); float target_y = 0; //yow角補正用 (Pgain, Igain, Dgain, 制御ループ時間[s], 計算出力100%定義) PID pidRobotYow(0.05, 0, 0, 0.01, 0.95, &timer); float target_yow = 0; //USS用 PID pidUss(0.025, 0, 0, 0.1, 0.6, &timer); float target_uss = 8.0; int posi_num = 0; int main() { //タイマー3の優先度を最低にする NVIC_SetPriority(TIMER3_IRQn, 100); //IMUのキャリブレーション wait(1); imu.performCalibration(); imu.startAngleComputing(); for(int i; i < 3; i++) enc[i].changeDirection(); //オドメーターの定義 float matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 0} }; Odometer odm(matrix, 0.048); float tmp = 0; float *encoders[3] = {&enc[0].rotations, &enc[1].rotations, &tmp}; odm.setupOdometerSensors(encoders, &imu.angle[2]); odm.startComputingOdometry(0.005, 0, 0, 0); //オドメーターX pidRobotX.sensor = &odm.x; pidRobotX.target = &target_x; pidRobotX.start(); //オドメーターY pidRobotY.sensor = &odm.y; pidRobotY.target = &target_y; pidRobotY.start(); //許容誤差 pidRobotX.allowable_error = 0.1; pidRobotY.allowable_error = 0.1; pidRobotYow.allowable_error = 2; pidUss.allowable_error = 3; //マイクロスイッチ sw1.mode(PullUp); sw2.mode(PullUp); while(1) { controller cmd = getPropoData(); can.set(1, 1, int(position[posi_num][3])); can.set(1, 2, int(position[posi_num][4])); //can.set(1, 3, int(position[posi_num][5])); while(can.send() == 0); can.read(); if(pidRobotX.isConvergence(1) == 1 && pidRobotYow.isConvergence(1) == 1) { if(position[posi_num][1] >= 10) { if(pidUss.isConvergence(1) == 1 && isConvergetnceTops() == 1) posi_num++; } else if(pidRobotY.isConvergence(1) == 1) posi_num++; } if(posi_num >= 19) posi_num = 0; //ロボットの移動速度(LX, LY, RX) float robot_velocity[3]; //yow角調整処理 *pidRobotYow.target = position[posi_num][2]; robot_velocity[2] = pidRobotYow.output; //x軸調整処理 *pidRobotX.target = position[posi_num][0]; robot_velocity[0] = pidRobotX.output; //USS距離調整処理 if(position[posi_num][1] >= 10) { *pidUss.target = position[posi_num][1] - 8; robot_velocity[1] = -pidUss.output; } else { //y軸調整処理 *pidRobotY.target = position[posi_num][1]; robot_velocity[1] = pidRobotY.output; } if(sw1 == 1 && sw2 == 1) imu.angle[2] = odm.y = 0; //ホイール速度計算 mecanum.setVelG(robot_velocity); mecanum.computeWheelVel(); mecanum.rescaleWheelVel(); //モーターの駆動 for(int i = 0; i < 4; i++) Motor[i].drive(mecanum.wheel_vel[i]); pc.printf("%.2f\t", odm.x); pc.printf("%.2f\t", odm.y); pc.printf("%.2f\t", imu.angle[2]); pc.printf("%.2f\t", uss.distance); pc.printf("\n"); wait(0.01); } } controller getPropoData() { float dead_zone = 0.05; controller propo; sbus.isFailSafe(); //propo直接コントロール if(sbus.isFailSafe()) { propo.LX = propo.LY = propo.RX = propo.RY = 0; propo.H = propo.A = propo.D = propo.F = propo.G = propo.fail_safe = 0; } else { propo.LX = sbus.getStickVal(0) / 255.0; propo.LY = sbus.getStickVal(1) / 255.0; propo.RX = -sbus.getStickVal(2) / 255.0; propo.RY = sbus.getStickVal(3) / 255.0; propo.H = sbus.getSwitchVal(0); propo.C = sbus.getSwitchVal(1); propo.E = sbus.getSwitchVal(2); propo.F = sbus.getSwitchVal(3); propo.G = sbus.getSwitchVal(4); propo.fail_safe = 1; } if(propo.RX < dead_zone && propo.RX > -dead_zone) propo.RX = 0; if(propo.RY < dead_zone && propo.RY > -dead_zone) propo.RY = 0; if(propo.LX < dead_zone && propo.LX > -dead_zone) propo.LX = 0; if(propo.LY < dead_zone && propo.LY > -dead_zone) propo.LY = 0; return propo; } bool isConvergetnceTops() { int velocity_pid = can.get(3, 1); int angle_pid = can.get(3, 2); int velocity_val = can.get(3, 3); int angle_val = can.get(3, 4); if(angle_pid == 1 && velocity_pid == 1 && velocity_val == position[posi_num][3] && angle_val == position[posi_num][4]) return 1; else return 0; }