Program that execute AEB system

Dependencies:   AEB Ultrasonic Controller_Master mbed

Dependents:   AEB

main.cpp

Committer:
AndreaAndreoli
Date:
2016-06-03
Revision:
1:8cb509a319e5
Parent:
0:64a08651b7c0
Child:
2:fb694fb2ef9b

File content as of revision 1:8cb509a319e5:

/*
* An example showing how to use the Ultrasonic library
*/
#include "mbed.h"
#include "Ultrasonic.h"

extern "C" {
#include "Controller.h"
#include "rtwtypes.h"
}

static RT_MODEL_Controller_T Controller_M_;
static RT_MODEL_Controller_T *const Controller_M = &Controller_M_;/* Real-time model */
static B_Controller_T Controller_B;    /* Observable signals */
static DW_Controller_T Controller_DW;  /* Observable states */

/* '<Root>/V' */
static real_T Controller_U_V;

/* '<Root>/D_M' */
static real_T Controller_U_D_M;

/* '<Root>/SLAVE' */
static uint8_T Controller_U_SLAVE;

/* '<Root>/BRAKE' */
static uint8_T Controller_Y_BRAKE;

/* '<Root>/LED_BLUE' */
static uint8_T Controller_Y_LED_BLUE;

/* '<Root>/LED_RED' */
static uint8_T Controller_Y_LED_RED;

/* '<Root>/MASTER' */
static uint8_T Controller_Y_MASTER;

/*
 * Associating rt_OneStep with a real-time clock or interrupt service routine
 * is what makes the generated code "real-time".  The function rt_OneStep is
 * always associated with the base rate of the model.  Subrates are managed
 * by the base rate from inside the generated code.  Enabling/disabling
 * interrupts and floating point context switches are target specific.  This
 * example code indicates where these should take place relative to executing
 * the generated code step function.  Overrun behavior should be tailored to
 * your application needs.  This example simply sets an error status in the
 * real-time model and returns from rt_OneStep.
 */
void rt_OneStep(RT_MODEL_Controller_T *const Controller_M);

Serial  pc(USBTX, USBRX); // tx, rx
DigitalOut led_R(LED_RED);
DigitalOut led_B(LED_BLUE);
DigitalIn  slave(D6);
Ticker t;
float V = 50;


void step();

int main()
{
    /* Pack model data into RTM */
    Controller_M->ModelData.blockIO = &Controller_B;
    Controller_M->ModelData.dwork = &Controller_DW;

    /* Initialize model */
    Controller_initialize(Controller_M, &Controller_U_V, &Controller_U_D_M,
                          &Controller_U_SLAVE, &Controller_Y_BRAKE,
                          &Controller_Y_LED_BLUE, &Controller_Y_LED_RED,
                          &Controller_Y_MASTER);
    Ultrasonic_init();  // Just call this funtion to initialize the ultrasonic sensor
    t.attach(&step,0.2);
    while (true) {
        wait(0.2);
    }
}


void step()
{
    Controller_U_D_M = read_cm();
    Controller_U_SLAVE = slave.read();
    rt_OneStep(Controller_M); 
    pc.printf("Distance: %f \n", Controller_U_D_M);    // Call read_cm() to get the distance in cm
    led_B = Controller_Y_LED_BLUE;
    led_R = Controller_Y_LED_RED;
}

void rt_OneStep(RT_MODEL_Controller_T *const Controller_M)
{
    static boolean_T OverrunFlag = false;

    /* Disable interrupts here */

    /* Check for overrun */
    if (OverrunFlag) {
        rtmSetErrorStatus(Controller_M, "Overrun");
        return;
    }

    OverrunFlag = true;

    /* Save FPU context here (if necessary) */
    /* Re-enable timer or interrupt here */
    /* Set model inputs here */

    /* Step the model */
    Controller_step(Controller_M, Controller_U_V, Controller_U_D_M,
                    Controller_U_SLAVE, &Controller_Y_BRAKE,
                    &Controller_Y_LED_BLUE, &Controller_Y_LED_RED,
                    &Controller_Y_MASTER);

    /* Get model outputs here */

    /* Indicate task complete */
    OverrunFlag = false;

    /* Disable interrupts here */
    /* Restore FPU context here (if necessary) */
    /* Enable interrupts here */
}