Temporary Connector Reversed Version

Dependencies:   UniGraphic mbed vt100

afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。

Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1

(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。

尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。

TFTモジュールについて 
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。
/media/uploads/Rhyme/img_2364.jpg

半田のジャンパを変えて、SPIの設定にしてください。
/media/uploads/Rhyme/img_2363.jpg

サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。

今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを 
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。

Committer:
Rhyme
Date:
Tue Apr 24 08:58:33 2018 +0000
Revision:
0:0b6732b53bf4
Temporary Connector Reversed Version

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Rhyme 0:0b6732b53bf4 1 /**
Rhyme 0:0b6732b53bf4 2 * MMA8451Q 3-Axis, 14-bit/8-bit Digital Accelerometer
Rhyme 0:0b6732b53bf4 3 */
Rhyme 0:0b6732b53bf4 4
Rhyme 0:0b6732b53bf4 5 #include "mbed.h"
Rhyme 0:0b6732b53bf4 6 #include "MMA8451Q.h"
Rhyme 0:0b6732b53bf4 7 #include "af_mgr.h"
Rhyme 0:0b6732b53bf4 8
Rhyme 0:0b6732b53bf4 9 #define REG_STATUS 0x00 // when F_MODE = 00
Rhyme 0:0b6732b53bf4 10 #define REG_FIFO_STATUS 0x00 // when F_MODE > 0
Rhyme 0:0b6732b53bf4 11 #define REG_XYZ_FIFO 0x01 // Root pointer to XYZ FIFO data
Rhyme 0:0b6732b53bf4 12 #define REG_OUT_X_MSB 0x01 // 8 MSBs of 14-bit sample
Rhyme 0:0b6732b53bf4 13 #define REG_OUT_X_LSB 0x02 // 6 LSBs of 14-bit sample
Rhyme 0:0b6732b53bf4 14 #define REG_OUT_Y_MSB 0x03
Rhyme 0:0b6732b53bf4 15 #define REG_OUT_Y_LSB 0x04
Rhyme 0:0b6732b53bf4 16 #define REG_OUT_Z_MSB 0x05
Rhyme 0:0b6732b53bf4 17 #define REG_OUT_Z_LSB 0x06
Rhyme 0:0b6732b53bf4 18 #define REG_F_SETUP 0x09 // FIFO setup
Rhyme 0:0b6732b53bf4 19 #define REG_TRIG_CFG 0x0A // Map of FIFO daa capture events
Rhyme 0:0b6732b53bf4 20 #define REG_SYSMOD 0x0B // Current System Mode
Rhyme 0:0b6732b53bf4 21 #define REG_INT_SOURCE 0x0C // Interrupt status
Rhyme 0:0b6732b53bf4 22 #define REG_WHO_AM_I 0x0D // Device ID (0x1A)
Rhyme 0:0b6732b53bf4 23 #define REG_XYZ_DATA_CFG 0x0E // Dynamic Range Settings
Rhyme 0:0b6732b53bf4 24 #define REG_HP_FILTER_CUTOFF 0x0F // Cutoff freq is set to 16Hz@800Hz
Rhyme 0:0b6732b53bf4 25 #define REG_PL_STATUS 0x10 // Landscape/Portrait orientation status
Rhyme 0:0b6732b53bf4 26 #define REG_PL_CFG 0x11 // Landscape/Portrait configuration
Rhyme 0:0b6732b53bf4 27 #define REG_PL_COUNT 0x12 // Landscape/Portrait debounce counter
Rhyme 0:0b6732b53bf4 28 #define REG_PL_BF_ZCOMP 0x13 // Back/Front, Z-Lock Trip threshold
Rhyme 0:0b6732b53bf4 29 #define REG_P_L_THS_REG 0x14 // Portrait to Landscape Trip Angle is 29 degree
Rhyme 0:0b6732b53bf4 30 #define REG_FF_MT_CFG 0x15 // Freefall/Motion function block configuration
Rhyme 0:0b6732b53bf4 31 #define REG_FF_MT_SRC 0x16 // Freefall/Motion event source register
Rhyme 0:0b6732b53bf4 32 #define REG_FF_MT_THS 0x17 // Freefall/Motion threshold register
Rhyme 0:0b6732b53bf4 33 #define REG_FF_MT_COUNT 0x18 // Freefall/Motion debounce counter
Rhyme 0:0b6732b53bf4 34 // TRANSIENT
Rhyme 0:0b6732b53bf4 35 #define REG_TRANSIENT_CFG 0x1D // Transient functional block configuration
Rhyme 0:0b6732b53bf4 36 #define REG_TRANSIENT_SRC 0x1E // Transient event status register
Rhyme 0:0b6732b53bf4 37 #define REG_TRANSIENT_THS 0x1F // Transient event threshold
Rhyme 0:0b6732b53bf4 38 #define REG_TRANSIENT_COUNT 0x20 // Transient debounce counter
Rhyme 0:0b6732b53bf4 39 // PULSE
Rhyme 0:0b6732b53bf4 40 #define REG_PULSE_CFG 0x21 // ELE, Double_XYZ or Single_XYZ
Rhyme 0:0b6732b53bf4 41 #define REG_PULSE_SRC 0x22 // EA, Double_XYZ or Single_XYZ
Rhyme 0:0b6732b53bf4 42 #define REG_PULSE_THSX 0x23 // X pulse threshold
Rhyme 0:0b6732b53bf4 43 #define REG_PULSE_THSY 0x24 // Y pulse threshold
Rhyme 0:0b6732b53bf4 44 #define REG_PULSE_THSZ 0x25 // Z pulse threshold
Rhyme 0:0b6732b53bf4 45 #define REG_PULSE_TMLT 0x26 // Time limit for pulse
Rhyme 0:0b6732b53bf4 46 #define REG_PULSE_LTCY 0x27 // Latency time for 2nd pulse
Rhyme 0:0b6732b53bf4 47 #define REG_PULSE_WIND 0x28 // Window time for 2nd pulse
Rhyme 0:0b6732b53bf4 48 #define REG_ASLP_COUNT 0x29 // Counter setting for Auto-SLEEP
Rhyme 0:0b6732b53bf4 49 // Control Registers
Rhyme 0:0b6732b53bf4 50 #define REG_CTRL_REG1 0x2A // ODR = 800Hz, STANDBY Mode
Rhyme 0:0b6732b53bf4 51 #define REG_CTRL_REG2 0x2B // Sleep Enable, OS Modes, RST, ST
Rhyme 0:0b6732b53bf4 52 #define REG_CTRL_REG3 0x2C // Wake from Sleep, IPOL, PP_OD
Rhyme 0:0b6732b53bf4 53 #define REG_CTRL_REG4 0x2D // Interrupt enable register
Rhyme 0:0b6732b53bf4 54 #define REG_CTRL_REG5 0x2E // Interrupt pin (INT1/INT2) map
Rhyme 0:0b6732b53bf4 55 // User Offset
Rhyme 0:0b6732b53bf4 56 #define REG_OFF_X 0x2F // X-axis offset adjust
Rhyme 0:0b6732b53bf4 57 #define REG_OFF_Y 0x30 // Y-axis offset adjust
Rhyme 0:0b6732b53bf4 58 #define REG_OFF_Z 0x31 // Z-axis offset adjust
Rhyme 0:0b6732b53bf4 59
Rhyme 0:0b6732b53bf4 60 // Value definitions
Rhyme 0:0b6732b53bf4 61 #define BIT_TRIG_TRANS 0x20 // Transient interrupt trigger bit
Rhyme 0:0b6732b53bf4 62 #define BIT_TRIG_LNDPRT 0x10 // Landscape/Portrati Orientation
Rhyme 0:0b6732b53bf4 63 #define BIT_TRIG_PULSE 0x08 // Pulse interrupt trigger bit
Rhyme 0:0b6732b53bf4 64 #define BIT_TRIG_FF_MT 0x04 // Freefall/Motion trigger bit
Rhyme 0:0b6732b53bf4 65
Rhyme 0:0b6732b53bf4 66 MMA8451Q::MMA8451Q(I2C *i2c, int addr) : m_addr(addr<<1) {
Rhyme 0:0b6732b53bf4 67 // activate the peripheral
Rhyme 0:0b6732b53bf4 68 p_i2c = i2c ;
Rhyme 0:0b6732b53bf4 69 uint8_t data[2] = {REG_CTRL_REG1, 0x01};
Rhyme 0:0b6732b53bf4 70 writeRegs(data, 2);
Rhyme 0:0b6732b53bf4 71 }
Rhyme 0:0b6732b53bf4 72
Rhyme 0:0b6732b53bf4 73 MMA8451Q::~MMA8451Q() { }
Rhyme 0:0b6732b53bf4 74
Rhyme 0:0b6732b53bf4 75 int MMA8451Q::readRegs(int addr, uint8_t * data, int len)
Rhyme 0:0b6732b53bf4 76 {
Rhyme 0:0b6732b53bf4 77 char t[1] = {addr};
Rhyme 0:0b6732b53bf4 78 int result ;
Rhyme 0:0b6732b53bf4 79 __disable_irq() ; // Disable Interrupts
Rhyme 0:0b6732b53bf4 80 result = p_i2c->write(m_addr, t, 1, true);
Rhyme 0:0b6732b53bf4 81 if (result == 0) {
Rhyme 0:0b6732b53bf4 82 result = p_i2c->read(m_addr, (char *)data, len);
Rhyme 0:0b6732b53bf4 83 }
Rhyme 0:0b6732b53bf4 84 __enable_irq() ; // Enable Interrupts
Rhyme 0:0b6732b53bf4 85 return( result ) ;
Rhyme 0:0b6732b53bf4 86 }
Rhyme 0:0b6732b53bf4 87
Rhyme 0:0b6732b53bf4 88 int MMA8451Q::writeRegs(uint8_t * data, int len)
Rhyme 0:0b6732b53bf4 89 {
Rhyme 0:0b6732b53bf4 90 int result ;
Rhyme 0:0b6732b53bf4 91 __disable_irq() ; // Disable Interrupts
Rhyme 0:0b6732b53bf4 92 result = p_i2c->write(m_addr, (char *)data, len);
Rhyme 0:0b6732b53bf4 93 __enable_irq() ; // Enable Interrupts
Rhyme 0:0b6732b53bf4 94 return( result ) ;
Rhyme 0:0b6732b53bf4 95 }
Rhyme 0:0b6732b53bf4 96
Rhyme 0:0b6732b53bf4 97 int MMA8451Q::getAllRawData(int16_t value[])
Rhyme 0:0b6732b53bf4 98 {
Rhyme 0:0b6732b53bf4 99 int result ;
Rhyme 0:0b6732b53bf4 100 uint8_t data[6] ;
Rhyme 0:0b6732b53bf4 101 result = readRegs(REG_OUT_X_MSB, data, 6) ;
Rhyme 0:0b6732b53bf4 102 if (result == 0) {
Rhyme 0:0b6732b53bf4 103 value[0] = ((int16_t)((data[0] << 8) | data[1])) >> 2 ;
Rhyme 0:0b6732b53bf4 104 value[1] = ((int16_t)((data[2] << 8) | data[3])) >> 2 ;
Rhyme 0:0b6732b53bf4 105 value[2] = ((int16_t)((data[4] << 8) | data[5])) >> 2 ;
Rhyme 0:0b6732b53bf4 106 }
Rhyme 0:0b6732b53bf4 107 return( result ) ;
Rhyme 0:0b6732b53bf4 108 }
Rhyme 0:0b6732b53bf4 109
Rhyme 0:0b6732b53bf4 110 int MMA8451Q::getAllData(float fvalue[])
Rhyme 0:0b6732b53bf4 111 {
Rhyme 0:0b6732b53bf4 112 int result ;
Rhyme 0:0b6732b53bf4 113 uint8_t data[6] ;
Rhyme 0:0b6732b53bf4 114 result = readRegs(REG_OUT_X_MSB, data, 6) ;
Rhyme 0:0b6732b53bf4 115 if (result == 0) {
Rhyme 0:0b6732b53bf4 116 fvalue[0] = (float)((int16_t)((data[0] << 8) | data[1])) / 16384.0 ;
Rhyme 0:0b6732b53bf4 117 fvalue[1] = (float)((int16_t)((data[2] << 8) | data[3])) / 16384.0 ;
Rhyme 0:0b6732b53bf4 118 fvalue[2] = (float)((int16_t)((data[4] << 8) | data[5])) / 16384.0 ;
Rhyme 0:0b6732b53bf4 119 }
Rhyme 0:0b6732b53bf4 120 return( result ) ;
Rhyme 0:0b6732b53bf4 121 }
Rhyme 0:0b6732b53bf4 122
Rhyme 0:0b6732b53bf4 123 int16_t MMA8451Q::getRawData(uint8_t addr)
Rhyme 0:0b6732b53bf4 124 {
Rhyme 0:0b6732b53bf4 125 int16_t value ;
Rhyme 0:0b6732b53bf4 126 uint8_t data[2] ;
Rhyme 0:0b6732b53bf4 127 readRegs(addr, data, 2) ;
Rhyme 0:0b6732b53bf4 128 value = ((int16_t)((data[0] << 8) | data[1])) >> 2 ;
Rhyme 0:0b6732b53bf4 129 return( value ) ;
Rhyme 0:0b6732b53bf4 130 }
Rhyme 0:0b6732b53bf4 131
Rhyme 0:0b6732b53bf4 132 int16_t MMA8451Q::getRawX(void)
Rhyme 0:0b6732b53bf4 133 {
Rhyme 0:0b6732b53bf4 134 int16_t value ;
Rhyme 0:0b6732b53bf4 135 value = getRawData(REG_OUT_X_MSB) ;
Rhyme 0:0b6732b53bf4 136 return( value ) ;
Rhyme 0:0b6732b53bf4 137 }
Rhyme 0:0b6732b53bf4 138
Rhyme 0:0b6732b53bf4 139 int16_t MMA8451Q::getRawY(void)
Rhyme 0:0b6732b53bf4 140 {
Rhyme 0:0b6732b53bf4 141 int16_t value ;
Rhyme 0:0b6732b53bf4 142 value = getRawData(REG_OUT_Y_MSB) ;
Rhyme 0:0b6732b53bf4 143 return( value ) ;
Rhyme 0:0b6732b53bf4 144 }
Rhyme 0:0b6732b53bf4 145
Rhyme 0:0b6732b53bf4 146 int16_t MMA8451Q::getRawZ(void)
Rhyme 0:0b6732b53bf4 147 {
Rhyme 0:0b6732b53bf4 148 int16_t value ;
Rhyme 0:0b6732b53bf4 149 value = getRawData(REG_OUT_Z_MSB) ;
Rhyme 0:0b6732b53bf4 150 return( value ) ;
Rhyme 0:0b6732b53bf4 151 }
Rhyme 0:0b6732b53bf4 152
Rhyme 0:0b6732b53bf4 153 float MMA8451Q::getAccX(void)
Rhyme 0:0b6732b53bf4 154 {
Rhyme 0:0b6732b53bf4 155 return(((float)getRawX())/4096.0) ;
Rhyme 0:0b6732b53bf4 156 }
Rhyme 0:0b6732b53bf4 157
Rhyme 0:0b6732b53bf4 158 float MMA8451Q::getAccY(void)
Rhyme 0:0b6732b53bf4 159 {
Rhyme 0:0b6732b53bf4 160 return(((float)getRawY())/4096.0) ;
Rhyme 0:0b6732b53bf4 161 }
Rhyme 0:0b6732b53bf4 162
Rhyme 0:0b6732b53bf4 163 float MMA8451Q::getAccZ(void)
Rhyme 0:0b6732b53bf4 164 {
Rhyme 0:0b6732b53bf4 165 return(((float)getRawZ())/4096.0) ;
Rhyme 0:0b6732b53bf4 166 }