Temporary Connector Reversed Version
Dependencies: UniGraphic mbed vt100
afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。
Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1
(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。
尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。
TFTモジュールについて
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。
半田のジャンパを変えて、SPIの設定にしてください。
サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。
今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。
sensors/LM75B.cpp
- Committer:
- Rhyme
- Date:
- 2018-04-24
- Revision:
- 1:6c54dc8acf96
- Parent:
- 0:0b6732b53bf4
File content as of revision 1:6c54dc8acf96:
#include "mbed.h" #include "LM75B.h" #include "af_mgr.h" /* Register list */ #define PTR_CONF 0x01 #define PTR_TEMP 0x00 #define PTR_TOS 0x03 #define PTR_THYST 0x02 /* Configuration register */ /* B[7:5] : Reserved */ /* B[4:3] : OS_F_QUE[1:0] OS fault queue value */ #define CONFIG_QUE_1 0x00 #define CONFIG_QUE_2 (0x01 << 3) #define CONFIG_QUE_4 (0x10 << 3) #define CONFIG_QUE_6 (0x11 << 3) /* B[2] : OS_POL 0 = OS active LOW, 1 = OS active HIGH */ #define CONFIG_OS_POL_L 0x00 #define CONFIG_OS_POL_H (0x01 << 2) /* B[1] : OS_COMP_INT 0 = OS comparator, 1 = OS interrupt */ #define CONFIG_OS_COMP 0x00 #define CONFIG_OS_INT (0x01 << 1) /* B[0] : SHUTDOWN 0 = normal, 1 = shutdown */ #define CONFIG_NORMARL 0x00 #define CONFIG_SHUTDOWN 0x01 /* Temperature register */ /* D[15:5] = 11 bit data 0.125 * temp data */ /* D[4:0] : reserved */ /* Tos register */ /* D[15:7] = 9 bit data */ /* D[6:0] : reserved */ /* Thyst register */ /* D[15:7] = 9 ibt data */ /* D[6:0] : reserved */ LM75B::LM75B(I2C *i2c, int addr) : m_addr(addr<<1) { p_i2c = i2c ; p_i2c->frequency(100000); /* 100kHz */ // activate the peripheral } LM75B::~LM75B() { } int LM75B::temp(int8_t *temp) { int result ; char t[1] = { 0x00 } ; result = p_i2c->write(m_addr, t, 1, true) ; if (result == 0) { result = p_i2c->read(m_addr, t, 1) ; } if (result == 0) { *temp = (int8_t)t[0] ; } return( result ) ; } int LM75B::getTemp(float *temp) { int result ; char t[2] = { 0, 0 } ; int16_t iTemp = 0 ; result = p_i2c->write(m_addr, t, 1) ; /* write pointer byte 0x00 */ if (result == 0) { result = p_i2c->read(m_addr, t, 2) ; /* read MSB, LSB */ } if (result == 0) { iTemp = (t[0] << 8) | t[1] ; iTemp >>= 5 ; *temp = 0.125 * iTemp ; } return( result ) ; } int LM75B::getConfig(uint8_t ptr_byte, uint8_t *config_data) { int result ; char config = 0x00 ; /* default value */ result = p_i2c->write(m_addr, (char*)(&ptr_byte), 1, true) ; if (result == 0) { result = p_i2c->read(m_addr, &config, 1) ; } if (result == 0) { *config_data = config ; } return( result ) ; } int LM75B::setConfig(uint8_t ptr_byte, uint8_t config_data) { int result ; char t[2] ; t[0] = ptr_byte ; t[1] = config_data ; result = p_i2c->write(m_addr, t, 2, true) ; return( result ) ; } int LM75B::readRegs(int addr, uint8_t * data, int len) { int result ; char t[1] = {addr}; __disable_irq() ; // Disable Interrupts result = p_i2c->write(m_addr, t, 1, true); if (result == 0) { result = p_i2c->read(m_addr, (char *)data, len); } __enable_irq() ; // Enable Interrupts return( result ) ; } int LM75B::writeRegs(uint8_t * data, int len) { int result ; __disable_irq() ; // Disable Interrupts result = p_i2c->write(m_addr, (char *)data, len); __enable_irq() ; // Enable Interrupts return( result ) ; }