Temporary Connector Reversed Version

Dependencies:   UniGraphic mbed vt100

afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。

Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1

(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。

尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。

TFTモジュールについて 
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。
/media/uploads/Rhyme/img_2364.jpg

半田のジャンパを変えて、SPIの設定にしてください。
/media/uploads/Rhyme/img_2363.jpg

サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。

今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを 
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。

sensors/VEML6040.cpp

Committer:
Rhyme
Date:
2018-04-24
Revision:
0:0b6732b53bf4

File content as of revision 0:0b6732b53bf4:

/*
 * File description here
 */
#include "VEML6040.h"
#include "af_mgr.h"

/* VEML6075 SLAVE ADDRESS AND FUNCTION DESCRIPTION */
#define REG_COLOR_CONF  0x00
#define REG_Reserved1  0x01
#define REG_Reserved2  0x02
#define REG_Reserved3  0x03
#define REG_Reserved4  0x04
#define REG_Reserved5  0x05
#define REG_Reserved6  0x06
#define REG_Reserved7  0x07
#define REG_R_Data  0x08
#define REG_G_Data  0x09
#define REG_B_Data  0x0A
#define REG_W_Data  0x0B

// Following magic numbers are from 
// VISHAY VEML6040 Application Note 84331
// Page 4 
#define LUX_RESOLUTION_0  (0.25168)
#define LUX_RESOLUTION_1  (0.12584)
#define LUX_RESOLUTION_2  (0.06292)
#define LUX_RESOLUTION_3  (0.03146)
#define LUX_RESOLUTION_4  (0.01573)
#define LUX_RESOLUTION_5  (0.007865)

// Following magic numbers are from 
// VISHAY VEML6040 Application Note 84331
// Page 9 
#define CORR_COEFF_M0  (0.048403)
#define CORR_COEFF_M1  (0.183633)
#define CORR_COEFF_M2  (-0.253589)
#define CORR_COEFF_M3  (0.022916)
#define CORR_COEFF_M4  (0.176388)
#define CORR_COEFF_M5  (-0.183205)
#define CORR_COEFF_M6  (-0.077436)
#define CORR_COEFF_M7  (0.124541)
#define CORR_COEFF_M8  (0.032081)

// Following magic numbers are from 
// VISHAY VEML6040 Application Note 84331
// Page 10
#define CCT_CONST  (4278.6)
#define OFFSET_OPEN_AIR  (0.5)

VEML6040::VEML6040(I2C *i2c, int addr) : m_addr(addr<<1) {
    p_i2c = i2c ;
    p_i2c->frequency(100000); /* 100kHz */
    // activate the peripheral
}

VEML6040::~VEML6040() { }

/**
 * set COLOR Config
 * @param colorconf uint8_t 8bit register value
 * @returns 0: success non-0: failure
 * @note Command Code 0x00 is used to access CONF register
 * @note bit[7] (reserved)
 * @note bit[6:4] = IT[2:0] Integration Time Selector
 * @note bit[3] (reserved)
 * @note bit[2] TRIG Proceed one detcting cycle at manual force mode
 * @note bit[1] AF 0: Auto mode 1: manual force mode
 * @note bit[0] SD 0: normal 1: chip shutdown setting
 *
 * @note IT[2:0] 0=40ms, 1=80ms, 2=160ms, 3=320ms, 4=640ms, 5=1280ms
 * @note as our WatchDog is set to 1sec, 1280ms is invalid
 * @note and 640ms may not be practical
 */
int VEML6040::setCOLORConf(uint8_t colorconf)
{
     int result ;
     uint8_t data[3] ;
     data[0] = REG_COLOR_CONF ;
     data[1] = colorconf ;
     data[2] = 0 ;
     result = writeRegs(data, 3) ;
     return( result ) ;
}

/**
 * get COLOR Config
 * @param *colorconf uint8_t refer to setCOLORConf for the value
 * @returns 0: success non-0: failure
 */
int VEML6040::getCOLORConf(uint8_t *colorconf)
{
    int result ;
    uint8_t data[2] ;
    result = readRegs(REG_COLOR_CONF, data, 2) ;
    if (result == 0) {
        *colorconf = data[0] ;
    }
    return( result ) ;
}



int VEML6040::getRData(uint16_t *rdata)
{
    uint8_t data[2] ;
    int result ;
    result = readRegs(REG_R_Data, data, 2) ;
    *rdata = (data[1]<<8) | data[0] ;
    return( result ) ;
}

int VEML6040::getGData(uint16_t *gdata)
{
    uint8_t data[2] ;
    int result ;
    result = readRegs(REG_G_Data, data, 2) ;
    *gdata = (data[1]<<8) | data[0] ;
    return( result ) ;
}

int VEML6040::getBData(uint16_t *bdata)
{
    uint8_t data[2] ;
    int result ;
    result = readRegs(REG_B_Data, data, 2) ;
    *bdata = (data[1]<<8) | data[0] ;
    return( result ) ;
}

int VEML6040::getWData(uint16_t *wdata)
{
    uint8_t data[2] ;
    int result ;
    result = readRegs(REG_W_Data, data, 2) ;
    *wdata = (data[1]<<8) | data[0] ;
    return( result ) ;
}

// usage
// fvalue = veml->getUVA() ;
// printf("%f", fvalue) ;
float VEML6040::getR(void) 
{
    uint16_t data ;
    float value ;
    getRData(&data) ;
    value = (float)LUX_RESOLUTION_0 * (float)data ;
    return( value ) ;
}

float VEML6040::getG(void) 
{
    uint16_t data ;
    float value ;
    getGData(&data) ;
    value = (float)LUX_RESOLUTION_0 * (float)data ;
    return( value ) ;
}

float VEML6040::getB(void) 
{
    uint16_t data ;
    float value ;
    getBData(&data) ;
    value = (float)LUX_RESOLUTION_0 * (float)data ;
    return( value ) ;
}

float VEML6040::getW(void) 
{
    uint16_t data ;
    float value ;
    getWData(&data) ;
    value = (float)LUX_RESOLUTION_0 * (float)data ;
    return( value ) ;
}

float VEML6040::getX(void) 
{
    uint16_t R ;
    uint16_t G ;
    uint16_t B ;
    float value ;
    getRData(&R) ;
    getGData(&G) ;
    getBData(&B) ;
    value = (float)CORR_COEFF_M0 * (float)R + (float)CORR_COEFF_M1 * (float)G + (float)CORR_COEFF_M2 * (float)B ;
    return( value ) ;
}

float VEML6040::getY(void) 
{
    uint16_t R ;
    uint16_t G ;
    uint16_t B ;
    float value ;
    getRData(&R) ;
    getGData(&G) ;
    getBData(&B) ;
    value = (float)CORR_COEFF_M3 * (float)R + (float)CORR_COEFF_M4 * (float)G + (float)CORR_COEFF_M5 * (float)B ;
    return( value ) ;
}

float VEML6040::getZ(void) 
{
    uint16_t R ;
    uint16_t G ;
    uint16_t B ;
    float value ;
    getRData(&R) ;
    getGData(&G) ;
    getBData(&B) ;
    value = (float)CORR_COEFF_M6 * (float)R + (float)CORR_COEFF_M7 * (float)G + (float)CORR_COEFF_M8 * (float)B ;
    return( value ) ;
}

float VEML6040::getCCTiData(void) 
{
    uint16_t rdata ;
    uint16_t gdata ;
    uint16_t bdata ;
    float value ;
    getRData(&rdata) ;
    getGData(&gdata) ;
    getBData(&bdata) ;
    value = ((float)rdata - (float)bdata) / (float)gdata + (float)OFFSET_OPEN_AIR ;
    return( value ) ;
}

float VEML6040::getCCTData(void) 
{
//    uint16_t cctidata ;
    float cctidata ;
    float value ;
    cctidata = getCCTiData() ;
//    getCCTiData(&cctidata) ;
    value = (float)CCT_CONST * powf( cctidata, -1.2455 ) ;
    return( value ) ;
}

float VEML6040::getCIEX(void) 
{
    float X ;
    float Y ;
    float Z ;
    float value ;
    X = getX() ;
    Y = getY() ;
    Z = getZ() ; 
    value = (float)X / ((float)X + (float)Y + (float)Z) ;
    return( value ) ;
}

float VEML6040::getCIEY(void) 
{
    float X ;
    float Y ;
    float Z ;
    float value ;
    X = getX() ;
    Y = getY() ;
    Z = getZ() ; 
    value = (float)Y / ((float)X + (float)Y + (float)Z) ;
    return( value ) ;
}

int VEML6040::readRegs(int addr, uint8_t * data, int len) {
    char t[1] = {addr};
    int result ;
    __disable_irq() ; // Disable Interrupts
    result = p_i2c->write(m_addr, t, 1, true);
    if (result == 0) { // write success
        result = p_i2c->read(m_addr, (char *)data, len, false);
    }
    __enable_irq() ; // Enable Interrupts
    return(result) ;
}

int VEML6040::writeRegs(uint8_t * data, int len) {
    int result ;
    __disable_irq() ; // Disable Interrupts
    result = p_i2c->write(m_addr, (char *)data, len);
    __enable_irq() ; // Enable Interrupts
    return(result) ;
}