Temporary Connector Reversed Version
Dependencies: UniGraphic mbed vt100
afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。
Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1
(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。
尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。
TFTモジュールについて
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。
半田のジャンパを変えて、SPIの設定にしてください。
サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。
今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。
edge_sensor/edge_accel.cpp
- Committer:
- Rhyme
- Date:
- 2018-04-24
- Revision:
- 0:0b6732b53bf4
File content as of revision 0:0b6732b53bf4:
#include "mbed.h" #include "afLib.h" #include "edge_reset_mgr.h" #include "edge_sensor.h" #include "edge_accel.h" #include "MMA8451Q.h" edge_accel::edge_accel(MMA8451Q *accel) : edge_sensor() { _accel = accel ; _sample_count = 0 ; _accumulation = 0 ; _prev_x = 0 ; _prev_y = 0 ; _prev_z = 0 ; _interval = 30 ; } edge_accel::~edge_accel(void) { delete _accel ; } void edge_accel::reset(void) { clear_value() ; edge_sensor::reset() ; } #if 0 void edge_accel::prepare(void) { // printf("accel prepare\n") ; } #endif int edge_accel::sample(void) { int result ; float theValue = 0.0 ; if (_sample_count > 1) { /* if sample is 1 or less, no data */ _num_sampled = _sample_count - 1 ; theValue = (float)_accumulation / (float)(_num_sampled) ; result = 0 ; /* success */ } else { result = 1 ; /* fail! */ } _value = theValue / 4096.0 ; _sampled_time = edge_time ; _sample_count = 0 ; _accumulation = 0 ; return( result ) ; } int edge_accel::deliver(void) { int result ; char timestr[16] ; print_time(_sampled_time) ; // _value = get_value() ; printf(" accel: %.3f [%d samples]\n", _value, _num_sampled) ; time2seq(_sampled_time, timestr) ; sprintf(_str_buf, "{\"DEVICE\":\"ACCEL\",\"PN\":\"MMA8451Q\",\"VAL_X\":\"%.3f\",\"VAL_Y\":\"0\",\"VAL_Z\":\"0\",\"UNIT\":\"g\",\"T\":\"%s\",\"E\":\"%d\"}", _value, timestr, _error_count) ; result = afero->setAttribute(1, _str_buf) ; return( result == afSUCCESS ) ; } int accel_v2y(float value, edge_chart_type *p) { int y ; if (value < p->min) { value = p->min ; } else if (value > p->max) { value = p->max ; } y = p->top + p->height/2 - 1 - (int)((p->height - 2) * value /(p->max - p->min)) ; return( y ) ; } void edge_accel::show(void) { int x, y ; edge_chart_type *p = &edge_chart[0] ; /* edge_chart for accel */ reset_watch_dog() ; if (display) { switch(display_mode) { case DISPLAY_MODE_SUMMARY: display->BusEnable(true) ; display->set_font((unsigned char*) Arial12x12); display->set_font_zoom(2, 2) ; display->foreground(White) ; display->locate(EDGE_SUMMARY_X, EDGE_SUMMARY_TIME_Y) ; displayTime(_sampled_time) ; // display->locate(10, 5) ; // display->printf(timestr) ; display->locate(EDGE_SUMMARY_X, EDGE_SUMMARY_ACCEL_Y) ; display->printf("Accel: %.3f [%4d]", _value, _num_sampled) ; display->BusEnable(false) ; reset_watch_dog() ; break ; case DISPLAY_MODE_CHART: x = p->left + p->index + 1; y = accel_v2y(_value, p) ; display->BusEnable(true) ; if (p->index == 0) { draw_chart_frame(p) ; } display->pixel(x, y, White) ; display->BusEnable(false) ; p->index = (p->index + 1) % (p->width - 2) ; break ; default: break ; } } clear_value() ; reset_watch_dog() ; } int edge_accel::accum(void) { int result ; int16_t value[3] ; if (_enable) { result = _accel->getAllRawData(value) ; if (result == 0) { /* success */ if (_sample_count != 0) { /* first data does not have prev_data */ _accumulation += abs(_prev_x - value[0]) + abs(_prev_y - value[1]) + abs(_prev_z - value[2]) ; } _sample_count++ ; _prev_x = value[0] ; _prev_y = value[1] ; _prev_z = value[2] ; } } return( result ) ; } void edge_accel::clear_value(void) { _sample_count = 0 ; _accumulation = 0 ; _prev_x = 0 ; _prev_y = 0 ; _prev_z = 0 ; }