Temporary Connector Reversed Version

Dependencies:   UniGraphic mbed vt100

afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。

Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1

(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。

尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。

TFTモジュールについて 
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。
/media/uploads/Rhyme/img_2364.jpg

半田のジャンパを変えて、SPIの設定にしてください。
/media/uploads/Rhyme/img_2363.jpg

サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。

今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを 
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。

af_utils/af_attriburtes.cpp

Committer:
Rhyme
Date:
2018-04-24
Revision:
0:0b6732b53bf4

File content as of revision 0:0b6732b53bf4:

#include "mbed.h"
#include <ctype.h>
#include "af_attributes.h"
#include "edge_time.h"
#include "edge_sensor.h"
#include "edge_accel.h"
#include "edge_color.h"
#include "edge_temp.h"
#include "edge_pressure.h"
#include "edge_mgr.h"
#include "edge_reset_mgr.h"
// #include "SO1602A.h"
#include <ILI9341.h>
#include "pending.h"

// extern SO1602A *display ;
extern ILI9341 *display ;
extern pending_class *pending ;

static const af_attribute_type af_attr[] = {
/*     ID,                     Description,                Type,                Size */
    {  ATTR_SENSE_VAL,         "Sensor Value",             ATTRIBUTE_TYPE_UTF8S, 255 },
    {  ATTR_ACCEL_PRESENT,     "Accel Present",            ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_ACCEL_ENABLE,      "Accel Enable",             ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_ACCEL_INTERVAL,    "Accel Interval",           ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_ACCEL_VALUE,       "Accel Value",              ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* first color sensor (VEML6040) and LED set */    
    {  ATTR_COLOR0_PRESENT,    "Color1 Present",           ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR0_ENABLE,     "Color1 Enable",            ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR0_INTERVAL,   "Color1 Interval",          ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR0_TRIGMODE,   "Color1 Trigger Mode",      ATTRIBUTE_TYPE_SINT8,   1 },
    {  ATTR_COLOR0_ITIME,      "Color1 Integration Time",  ATTRIBUTE_TYPE_SINT8,   1 },    
    {  ATTR_COLOR0_CALIBRATE,  "Color1 Calibrate",         ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR0_PWM_R,      "Color1 PWM R",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR0_PWM_G,      "Color1 PWM G",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR0_PWM_B,      "Color1 PWM B",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR0_PWM_PERIOD, "Color1 PWM Period",        ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR0_PWM_TARGET, "Color1 PWM Target",        ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR0_R_VALUE,    "Color1 R",                 ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR0_G_VALUE,    "Color1 G",                 ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR0_B_VALUE,    "Color1 B",                 ATTRIBUTE_TYPE_SINT16,  2 },
/* second color sensor (VEML6040) and LED set */ 
    {  ATTR_COLOR1_PRESENT,    "Color2 Present",           ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR1_ENABLE,     "Color2 Enable",            ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR1_INTERVAL,   "Color2 Interval",          ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR1_TRIGMODE,   "Color2 Trigger Mode",      ATTRIBUTE_TYPE_SINT8,   1 },
    {  ATTR_COLOR1_ITIME,      "Color2 Integration Time",  ATTRIBUTE_TYPE_SINT8,   1 },
    {  ATTR_COLOR1_CALIBRATE,  "Color2 Calibrate",         ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_COLOR1_PWM_R,      "Color2 PWM R",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR1_PWM_G,      "Color2 PWM G",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR1_PWM_B,      "Color2 PWM B",             ATTRIBUTE_TYPE_SINT32,  4 },
    {  ATTR_COLOR1_PWM_PERIOD, "Color2 PWM Period",        ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR1_PWM_TARGET, "Color2 PWM Target",        ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR1_R_VALUE,    "Color2 R",                 ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR1_G_VALUE,    "Color2 G",                 ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_COLOR1_B_VALUE,    "Color2 B",                 ATTRIBUTE_TYPE_SINT16,  2 },
/* first temperature sensor (LM75B) */    
    {  ATTR_TEMP0_PRESENT,    "Temp0 Present",             ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP0_ENABLE,     "Temp0 Enable",              ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP0_INTERVAL,   "Temp0 Interval",            ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_TEMP0_VALUE,      "Temp0 Value",               ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* second temperature sensor (SMTC502AT/Before) */    
    {  ATTR_TEMP1_PRESENT,    "Temp1 Present",             ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP1_ENABLE,     "Temp1 Enable",              ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP1_INTERVAL,   "Temp1 Interval",            ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_TEMP1_VALUE,      "Temp1 Value",               ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* third temperature sensor (SMTC502AT/After) */    
    {  ATTR_TEMP2_PRESENT,    "Temp2 Present",             ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP2_ENABLE,     "Temp2 Enable",              ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP2_INTERVAL,   "Temp2 Interval",            ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_TEMP2_VALUE,      "Temp2 Value",               ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* fouth temperateure sensor (LM75B) */
    {  ATTR_TEMP3_PRESENT,    "Temp3 Present",             ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP3_ENABLE,     "Temp3 Enable",              ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_TEMP3_INTERVAL,   "Temp3 Interval",            ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_TEMP3_VALUE,      "Temp3 Value",               ATTRIBUTE_TYPE_FIXED_15_16, 4}, 
/* Gas Pressure sensor (PSE530) */    
    {  ATTR_GAS_PRESENT,      "Gas Pressure Present",      ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_GAS_ENABLE,       "Gas Pressure Enable",       ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_GAS_INTERVAL,     "Gas Pressure Interval",     ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_GAS_VALUE,        "Gas Pressure Value",        ATTRIBUTE_TYPE_FIXED_15_16, 4}, 
    {  ATTR_GAS_THR_MODE,     "Gas Press Threshold Mode",  ATTRIBUTE_TYPE_SINT8,   1 },
    {  ATTR_GAS_THR_HIGH,     "Gas Press High Thresh",     ATTRIBUTE_TYPE_SINT16,  2 },
    {  ATTR_GAS_THR_LOW,      "Gas Press Low Thresh",      ATTRIBUTE_TYPE_SINT16,  2 },
/* Software Reset Request */    
    {  ATTR_SOFTWARE_RESET,   "Software Reset",            ATTRIBUTE_TYPE_BOOLEAN, 1 },
    {  ATTR_DISPLAY_MODE,     "Display Mode",              ATTRIBUTE_TYPE_SINT8,   1 },
    {  ATTR_MCU_RESET_REASON, "MCU Reset Reason",          ATTRIBUTE_TYPE_UTF8S,  64 },
                   
    { ATTR_LED,               "LED",                       ATTRIBUTE_TYPE_SINT16,  2 },
    { ATTR_IO0,               "I/O 0",                     ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_IO1,               "I/O 1",                     ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_IO2,               "I/O 2",                     ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_BUTTON,            "BUTTON",                    ATTRIBUTE_TYPE_BOOLEAN, 2 },
    { ATTR_IO3,               "I/O 3",                     ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_BOOT_LOADER_VER,   "Bootloader Version",        ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_BLE_STACK_VER,     "BLE Stack Version",         ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_FW_APP_VER,        "FW Application Version",    ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_DEVICE_DESC,       "Device Description",        ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_WIFI_VER,          "Wi-Fi chip",                ATTRIBUTE_TYPE_SINT64,  8 },
    { ATTR_OFFLINE_SCHED,     "Offline Schedules enable",  ATTRIBUTE_TYPE_SINT16,  2 }, 
    { ATTR_SECURITY_ENABLED,  "Security Enabled",          ATTRIBUTE_TYPE_SINT8,   1 }, /* ? */
    { ATTR_UTC_OFFSET,        "UTC offset data",           ATTRIBUTE_TYPE_BYTES,   8 },
    { ATTR_CONFIGURES_SSID,   "Configured SSID",           ATTRIBUTE_TYPE_UTF8S,  10 }, /* ? */
    { ATTR_WIFI_BARS,         "Wi-Fi Bars",                ATTRIBUTE_TYPE_SINT8,   1 },
    { ATTR_WIFI_STDY_STATE,   "Wi-Fi Steady State",        ATTRIBUTE_TYPE_SINT8,   1 },
    { ATTR_COMMAND,           "Command",                   ATTRIBUTE_TYPE_BYTES,   8 }, /* ? */   
    { ATTR_ASR_STATE,         "ASR State",                 ATTRIBUTE_TYPE_SINT8,   1 },
    { ATTR_LOW_BATTERY,       "Low Battery Warning",       ATTRIBUTE_TYPE_SINT8,   1 },
    { ATTR_LINKED_TIMESTAMP,  "Linked Timestamp",          ATTRIBUTE_TYPE_SINT32,  4 },
    { ATTR_ATTR_ACK,          "Attribute ACK",             ATTRIBUTE_TYPE_SINT16,  8 },
    { ATTR_REBOOT_REASON,     "Reboot Reason",             ATTRIBUTE_TYPE_UTF8S, 100 },
    { ATTR_BLE_COMMS,         "BLE Comms",                 ATTRIBUTE_TYPE_BYTES,  12 },
    { ATTR_MCU_INTERFACE,     "MCU Interface",             ATTRIBUTE_TYPE_SINT8,   1 },
    { 0,                      0,                           0,                      0 }
} ;

int get_af_attr(uint16_t id) 
{
    int i ;
    for (i = 0 ; af_attr[i].id != 0 ; i++ ) {
        if (id == af_attr[i].id) {
            break ;
        }
    }
    return (i) ;
}

void print_af_error(int resultCode) 
{
    switch(resultCode) {
    case afSUCCESS:
        printf("Operation completed successfully\n") ;
        break ;
    case afERROR_NO_SUCH_ATTRIBUTE:
        printf("Request was made for unknown attribute id\n") ;
        break ;
    case afERROR_BUSY:
        printf("Request already in progress, try again\n") ;
        break ;
    case afERROR_INVALID_COMMAND:
        printf("Command could not be parsed\n") ;
        break ;
    case afERROR_QUEUE_OVERFLOW:
        printf("Queue is full\n") ;
        break ;
    case afERROR_QUEUE_UNDERFLOW:
        printf("Queue is empty\n") ;
        break ;
    case afERROR_INVALID_PARAM:
        printf("Bad input parameter\n") ;
        break ;
    default:
        printf("Unknown error code %d\n", resultCode) ;
        break ;
    }
}

void af_print_values(
    const uint8_t   requestId, 
    const uint16_t  attributeId,
    const uint16_t  valueLen,
    const uint8_t   *value
) 
{
    int i, id ;

    id = get_af_attr(attributeId) ;

    if (af_attr[id].id  != 0) {
        printf(af_attr[id].description) ;
        printf(" : ") ;
        switch(af_attr[id].attribute_type) {
        case ATTRIBUTE_TYPE_BOOLEAN:
        case ATTRIBUTE_TYPE_SINT8: 
            if (valueLen >= 1) {
                printf("%02X\n", value[0]) ;
            }
            break ;
        case ATTRIBUTE_TYPE_SINT16:
            if (valueLen >= 2) {
                printf("%02X%02X\n", value[1], value[0]) ;
            }
            break ; 
        case ATTRIBUTE_TYPE_SINT32:
            if (valueLen >= 4) {
                printf("%02X%02X%02X%02X\n",
                    value[3],value[2],value[1],value[0]) ;
            }
            break ;
        case ATTRIBUTE_TYPE_SINT64:
            if (valueLen >= 8) {
                printf("%02X%02X %02X%02X %02X%02X %02X%02X\n",
                    value[7], value[6], value[5], value[4],
                    value[3], value[2], value[1], value[0]) ;
            }
            break ;
        case ATTRIBUTE_TYPE_UTF8S: 
            if (valueLen > 0) {
                for (i = 0 ; i < valueLen ; i++) {
                    if (isprint(value[i])) {
                        printf("%c", value[i]) ;
                    } else if (value[i] == 0) { /* string terminator NULL */
                        break ;
                    } else {
                        printf("\'%02X\'",value[i]) ;
                    }
                }
                printf("\n") ;
            }
            break ;
        case ATTRIBUTE_TYPE_BYTES:
        default:
            if (valueLen > 0) {
                for (i = 0 ; i < valueLen ; i++ ) {
                    printf("%02X ", value[i]) ;
                }
                printf("\n") ;
            }
            break ;
        }
    } else {
        if (valueLen > 0) {
            for (i = 0 ; i < valueLen ; i++ ) {
                printf("%02X ", value[i]) ;
            }
            printf("\n") ;
        }
    }
//    printf("\n") ;
}

void assignAttribute(
    const uint8_t   requestId, 
    const uint16_t  attributeId,
    const uint16_t  valueLen,
    const uint8_t   *value,
    bool fromRequest
) 
{
    switch(attributeId) {
    case ATTR_LINKED_TIMESTAMP: /* timestamp */  
        set_time(valueLen, value) ; /* 68 us */
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        printf("timestampe = ") ;
        print_date_wd(&current_time) ;
//        print_time(&current_time) ;
        printf("\n") ;
        break ;
    case ATTR_SOFTWARE_RESET: /* software reset requested! */
        if (value[0]) {
            reset_watch_dog() ;
            printf("Software Reset Requested!\n") ;
            if (display != 0) {
                display->cls() ;
                display->locate(0,0) ;
                display->printf("System Rebooting!") ;
            }
            reset_watch_dog() ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
            wait(0.5) ;
            reset_watch_dog() ;
            reboot_edge() ;
        }
        break ;
    case ATTR_DISPLAY_MODE:
        if (display_mode != value[0]) {
            display_mode = value[0] ;
            if (display) {
                display->BusEnable(true) ;
                display->cls() ;
                display->BusEnable(false) ;
            }
        }
        reset_watch_dog() ;
        switch(value[0]) {
        case DISPLAY_MODE_GAS: /* gas pressure monitor only */
            break ;
        case DISPLAY_MODE_SUMMARY: /* summary */
            break ;
        case DISPLAY_MODE_CHART: /* chart mode */
            if (display) {
                draw_all_chart_frame() ;
            }
            break ;
        case DISPLAY_MODE_OFF: /* display off */
        default:
            display_mode = DISPLAY_MODE_OFF ;
            break ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        break ;
    case ATTR_ACCEL_ENABLE: /* accel enable */
        if (sensor[SENSOR_ID_ACCEL]) {
            if (value[0]) {
                sensor[SENSOR_ID_ACCEL]->reset() ;
                sensor[SENSOR_ID_ACCEL]->enable() ;
            } else if (sensor[SENSOR_ID_ACCEL]){
                sensor[SENSOR_ID_ACCEL]->disable() ;
            }
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_ACCEL_INTERVAL:
        if (sensor[SENSOR_ID_ACCEL]) {
            sensor[SENSOR_ID_ACCEL]->setInterval((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_COLOR0_ENABLE: /* color0 enable */
        if (sensor[SENSOR_ID_COLOR1]) {
            if (value[0]) {
                sensor[SENSOR_ID_COLOR1]->reset() ;
                sensor[SENSOR_ID_COLOR1]->enable() ;
            } else {
                sensor[SENSOR_ID_COLOR1]->disable() ;
            }
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_COLOR0_INTERVAL:
        if (sensor[SENSOR_ID_COLOR1]) {
            sensor[SENSOR_ID_COLOR1]->setInterval((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;    
    case ATTR_COLOR0_TRIGMODE: /* color0 config */
        if (sensor[SENSOR_ID_COLOR1]) {
            uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR1])->getConfig() & 0x70 ;
            if (value[0]) {
                config = config | 0x06 ;
            } 
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->setConfig(config) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_COLOR0_ITIME: /* color0 config */
        if (sensor[SENSOR_ID_COLOR1]) {
            uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR1])->getConfig() & 0x07 ;
            config = (value[0] << 4) | config ;
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->setConfig(config) ;
          if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;    
    case ATTR_COLOR0_PWM_PERIOD: /* color0 pwm period */
        if (sensor[SENSOR_ID_COLOR1]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->set_pwm_period((value[1] << 8) | value[0]) ;
          if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }            
        break ;
    case ATTR_COLOR0_PWM_TARGET: /* color0 pwm calibration target */
        if (sensor[SENSOR_ID_COLOR1]) {
            color0_target[0] = (value[1] << 8) | value[0] ;
            color0_target[1] = color0_target[0] ;
            color0_target[2] = color0_target[1] ;
          if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }            
        break ;     
#if 1 /* do not handle calibration twice */   
    case ATTR_COLOR0_CALIBRATE: /* calibrate color0 */
        if (sensor[SENSOR_ID_COLOR1] && value[0] && fromRequest) { /* do calibration */ 
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->request_calibration() ;
        }
        break ;
#endif
    case ATTR_COLOR0_PWM_R:
        if (sensor[SENSOR_ID_COLOR1]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmR( (value[1] << 8) | value[0] ) ;
//            color0_pwm[0] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_COLOR0_PWM_G:
        if (sensor[SENSOR_ID_COLOR1]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmG( (value[1] << 8) | value[0] ) ;
//            color0_pwm[1] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_COLOR0_PWM_B:
        if (sensor[SENSOR_ID_COLOR1]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmB( (value[1] << 8) | value[0] ) ;
//            color0_pwm[2] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_COLOR1_ENABLE: /* color1 enable */
        if (sensor[SENSOR_ID_COLOR2]) {
            if (value[0]) {
                sensor[SENSOR_ID_COLOR2]->reset() ;
                sensor[SENSOR_ID_COLOR2]->enable() ;
            } else {
                sensor[SENSOR_ID_COLOR2]->disable() ;
            }
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_COLOR1_INTERVAL:
        if (sensor[SENSOR_ID_COLOR2]) {
            sensor[SENSOR_ID_COLOR2]->setInterval((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;    
    case ATTR_COLOR1_TRIGMODE: /* color0 config */
        if (sensor[SENSOR_ID_COLOR2]) {
            uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR2])->getConfig() & 0x70 ;
            if (value[0]) {
                config = config | 0x06 ;
            } 
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->setConfig(config) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_COLOR1_ITIME: /* color0 config */
        if (sensor[SENSOR_ID_COLOR2]) {
            uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR2])->getConfig() & 0x07 ;
            config = (value[0] << 4) | config ;
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->setConfig(config) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;  
    case ATTR_COLOR1_PWM_PERIOD: /* color0 pwm period */
        if (sensor[SENSOR_ID_COLOR2]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->set_pwm_period((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }            
        break ;
    case ATTR_COLOR1_PWM_TARGET: /* color0 pwm calibration target */
        if (sensor[SENSOR_ID_COLOR2]) {
            color1_target[0] = (value[1] << 8) | value[0] ;
            color1_target[1] = color1_target[0] ;
            color1_target[2] = color1_target[1] ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }            
        break ;   
#if 1 /* do not handle calibration twice */
    case ATTR_COLOR1_CALIBRATE: /* calibrate color1 */
        if (sensor[SENSOR_ID_COLOR2] && value[0] && fromRequest) { /* do calibration! */
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->request_calibration() ;
        }
        break ;
#endif
    case ATTR_COLOR1_PWM_R:
        if (sensor[SENSOR_ID_COLOR2]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmR( (value[1] << 8) | value[0] ) ;
//            color1_pwm[0] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_COLOR1_PWM_G:
        if (sensor[SENSOR_ID_COLOR2]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmG( (value[1] << 8) | value[0] ) ;
//            color1_pwm[1] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_COLOR1_PWM_B:
        if (sensor[SENSOR_ID_COLOR2]) {
            ((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmB( (value[1] << 8) | value[0] ) ;
//            color1_pwm[2] = (value[1] << 8) | value[0] ;
        }
        if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;       
        break ;
    case ATTR_TEMP0_ENABLE: /* temp0 is used to control temp-sensors */
        if (sensor[SENSOR_ID_TEMP]) {
            if (value[0]) {
                sensor[SENSOR_ID_TEMP]->reset() ;
                sensor[SENSOR_ID_TEMP]->enable() ;
            } else {
                sensor[SENSOR_ID_TEMP]->disable() ;
            }
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        } 
        break ;
    case ATTR_TEMP0_INTERVAL:
        if (sensor[SENSOR_ID_TEMP]) {
            sensor[SENSOR_ID_TEMP]->setInterval((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ; 
    case ATTR_TEMP3_ENABLE: /* temp3 enable */
        break ;
    case ATTR_GAS_ENABLE: /* pressure enable */
        if (sensor[SENSOR_ID_PRESS]) {
            if (value[0]) {
                sensor[SENSOR_ID_PRESS]->reset() ;
                sensor[SENSOR_ID_PRESS]->enable() ;
            } else {
                sensor[SENSOR_ID_PRESS]->disable() ;
            }
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }   
        break ;
    case ATTR_GAS_INTERVAL:
        if (sensor[SENSOR_ID_PRESS]) {
            sensor[SENSOR_ID_PRESS]->setInterval((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ; 
    case ATTR_GAS_THR_MODE:
        if (sensor[SENSOR_ID_PRESS]) {
            ((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_mode(value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_GAS_THR_HIGH:
        if (sensor[SENSOR_ID_PRESS]) {
            ((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_high((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;
    case ATTR_GAS_THR_LOW:
        if (sensor[SENSOR_ID_PRESS]) {
            ((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_low((value[1] << 8) | value[0]) ;
            if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
        }
        break ;               
    default:
        break ;    
    }
}

/*
 * Callback that allows ASR to request an MCU attribute be changed. 
 * You should define this function in your MCU firmware to perform application-specific actions 
 * your code must take (e.g., updating the state of the hardware), 
 * in light of the attribute value change.
*/
void attributeChangeRequest(
    const uint8_t   requestId, 
    const uint16_t  attributeId,
    const uint16_t  valueLen,
    const uint8_t   *value
) 
{ 
    uint32_t timestamp = edge_time ;
    if ((pending != 0)&&(pending->request->requestId == requestId)) {
        pending->replied_time = timestamp ;

    }
    ts2time(timestamp, &current_time) ; /* 12 us */
    if (verbos) {
        print_time(&current_time) ;
        printf(" %5d ASR requested [%d] : ", attributeId, requestId) ;
        af_print_values(requestId, attributeId, valueLen, value) ;
    }

    assignAttribute(requestId, attributeId, valueLen, value, true) ;

//    af_print_values(requestId, attributeId, valueLen, value) ;
    if ((pending != 0)&&(pending->request->requestId == requestId)) {
        printf("Request [%d] replied in %d sec!\n", requestId, pending->replied_time - pending->submit_time) ;
        delete pending ;
        pending = 0 ;
    }
}

/*
 * Application callback that allows afLib to notify that an attribute has changed. 
 * This method will be called in response to a getAttribute call from the application 
 * and whenever a ASR module attribute changes.
 */
void attributeUpdatedReport(
    const uint8_t   requestId,
    const uint16_t  attributeId,
    const uint16_t  valueLen,
    const uint8_t   *value
) 
{
    uint32_t timestamp = edge_time ;
    int result ;
    if ((pending != 0)&&(pending->request->requestId == requestId)) {
        pending->replied_time = timestamp ;
    }   
    ts2time(timestamp, &current_time) ; /* 12us */
    if (verbos) {
        print_time(&current_time) ;
        printf(" %5d ASR reported [%d]: ", attributeId, requestId) ;
        af_print_values(requestId, attributeId, valueLen, value) ;
    }

    switch(attributeId) {
    case ATTR_LINKED_TIMESTAMP:
        set_time(valueLen, value) ; /* 68 us */
        printf("timestampe = ") ;
        print_date_wd(&current_time) ;
//        print_time(&current_time) ;
        printf("\n") ;
        break ;         
    case ATTR_WIFI_STDY_STATE:
        gConnected = false ;
        printf("WiFi Steady State: ") ;
        switch(value[0]) {
        case 0: printf("Not Connected\n")      ; break ;
        case 1: printf("Pending\n") ;            break ;
        case 2: 
            printf("Connected\n") ;       
            gConnected = true ; // the only case Connected state is OK   
            break ;
        case 3: printf("Unknown Failure\n") ;    break ;
        case 4: printf("Association Failed\n") ; break ;
        case 5: printf("Handshake Failed\n") ;   break ;
        case 6: printf("Echo Failed\n") ;        break ;
        case 7: printf("SSID Not Found\n") ;     break ;
        case 8: printf("NTP Failed\n") ;         break ;
        default: printf("Unknown [%d]\n", value[0]) ; break ;
        }
        break ;
    case ATTR_REBOOT_REASON:
        printf("Reboot Reason: ") ;
        switch(value[0]) {
        case 1: printf("Reset pin asserted\n") ; break ;
        case 2: printf("Watchdog reset\n") ;     break ;
        case 4: printf("Software reset\n") ;     break ;
        case 8: printf("CPU Lock up\n") ;        break ;
        default: printf("Unknown [%d]\n", value[0]) ;     break ;
        }
        if (reboot_requested) {
            printf("Unexpected ASR Reboot. Rebooting MCU.\n") ;
            wait_ms(100) ;
            reboot_edge() ;
        }
        break ; 
    case ATTR_MCU_INTERFACE:
        printf("MCU Interface: ") ;
        switch(value[0]) {
        case 0:  printf("No MCU\n") ;    break ;
        case 1:  printf("SPI Slave\n") ; break ;
        case 2:  printf("UART\n") ;      break ;
        default: printf("Unknown\n") ;   break ; 
        }
        break ;
    case AF_SYSTEM_ASR_STATE:
        printf("ASR state: ") ;
        switch(value[0]) {
        case MODULE_STATE_REBOOTED:
            gLinked = false ;
            printf("Rebooted\n") ;
//            wait_ms(100) ; /* */
            if (edge_mgr_status == EDGE_MGR_RUNNING) {
                result = afero->getAttribute(ATTR_REBOOT_REASON) ;
                reboot_requested = true ;
//                reboot_edge() ;
            }
            break ;
        case MODULE_STATE_LINKED:
            if (gLinked == false) { /* new link established */
                result = afero->getAttribute(ATTR_LINKED_TIMESTAMP) ;
                if (result != afSUCCESS) {
                    printf("getAttriute for ATTR_LINKED_TIMESTAMP failed\n") ;
                }
            }
            gLinked = true ;
            printf("Linked\n") ;
            break ;
        case MODULE_STATE_UPDATING:
            gLinked = true ; 
            printf("Updating\n") ;
            if (display) {
                display->cls() ;
                display->locate(5, 5) ;
                display->printf("FW Updating...") ;
            }
            break ;
        case MOUDLE_STATE_UPDATE_READY:
            gLinked = false ;
            printf("Update ready - rebooting\n") ;
            if (display) {
                display->cls() ;
                display->locate(5, 5) ;
                display->printf("Rebooting...") ;
            }
            while(afero->setAttribute32(AF_SYSTEM_COMMAND, MODULE_COMMAND_REBOOT) != afSUCCESS) {
                afero->loop() ;
                wait_us(100) ;
            }
            reboot_edge() ;
            break ;
        default:
            break ;
        }
        break ;
    default:
        assignAttribute(requestId, attributeId, valueLen, value, false) ;
        break ;
    }      
    if ((pending != 0)&&(pending->request->requestId == requestId)) {
        printf("Request [%d] replied in %d sec!\n", requestId, pending->replied_time - pending->submit_time) ;
        delete pending ;
        pending = 0 ;
    }      
}