I2C hang recover function added

Dependencies:   UniGraphic mbed vt100

In this version, check_i2c_pins function was added in edge_mgr.cpp.

プログラムの起動時、I2Cモジュールを初期化する前に、I2Cに使用するピンの電位を確認し
もし一方でも Low に張り付いていた場合、SCL を GPIO 出力に設定して 
所定回数 (I2C_UNLOCK_TRIAL_CYCLE) 反転させることにより、疑似リセットクロックを生成します。

その後は、通常の起動手順に復帰し、以降はこれまでと同様の動作をします。

Committer:
Rhyme
Date:
Tue Apr 03 08:30:29 2018 +0000
Revision:
0:d895cd1cd897
Initial I2C Pin force reset function added

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Rhyme 0:d895cd1cd897 1 /**
Rhyme 0:d895cd1cd897 2 * MMA8451Q 3-Axis, 14-bit/8-bit Digital Accelerometer
Rhyme 0:d895cd1cd897 3 */
Rhyme 0:d895cd1cd897 4
Rhyme 0:d895cd1cd897 5 #include "mbed.h"
Rhyme 0:d895cd1cd897 6 #include "MMA8451Q.h"
Rhyme 0:d895cd1cd897 7 #include "af_mgr.h"
Rhyme 0:d895cd1cd897 8
Rhyme 0:d895cd1cd897 9 #define REG_STATUS 0x00 // when F_MODE = 00
Rhyme 0:d895cd1cd897 10 #define REG_FIFO_STATUS 0x00 // when F_MODE > 0
Rhyme 0:d895cd1cd897 11 #define REG_XYZ_FIFO 0x01 // Root pointer to XYZ FIFO data
Rhyme 0:d895cd1cd897 12 #define REG_OUT_X_MSB 0x01 // 8 MSBs of 14-bit sample
Rhyme 0:d895cd1cd897 13 #define REG_OUT_X_LSB 0x02 // 6 LSBs of 14-bit sample
Rhyme 0:d895cd1cd897 14 #define REG_OUT_Y_MSB 0x03
Rhyme 0:d895cd1cd897 15 #define REG_OUT_Y_LSB 0x04
Rhyme 0:d895cd1cd897 16 #define REG_OUT_Z_MSB 0x05
Rhyme 0:d895cd1cd897 17 #define REG_OUT_Z_LSB 0x06
Rhyme 0:d895cd1cd897 18 #define REG_F_SETUP 0x09 // FIFO setup
Rhyme 0:d895cd1cd897 19 #define REG_TRIG_CFG 0x0A // Map of FIFO daa capture events
Rhyme 0:d895cd1cd897 20 #define REG_SYSMOD 0x0B // Current System Mode
Rhyme 0:d895cd1cd897 21 #define REG_INT_SOURCE 0x0C // Interrupt status
Rhyme 0:d895cd1cd897 22 #define REG_WHO_AM_I 0x0D // Device ID (0x1A)
Rhyme 0:d895cd1cd897 23 #define REG_XYZ_DATA_CFG 0x0E // Dynamic Range Settings
Rhyme 0:d895cd1cd897 24 #define REG_HP_FILTER_CUTOFF 0x0F // Cutoff freq is set to 16Hz@800Hz
Rhyme 0:d895cd1cd897 25 #define REG_PL_STATUS 0x10 // Landscape/Portrait orientation status
Rhyme 0:d895cd1cd897 26 #define REG_PL_CFG 0x11 // Landscape/Portrait configuration
Rhyme 0:d895cd1cd897 27 #define REG_PL_COUNT 0x12 // Landscape/Portrait debounce counter
Rhyme 0:d895cd1cd897 28 #define REG_PL_BF_ZCOMP 0x13 // Back/Front, Z-Lock Trip threshold
Rhyme 0:d895cd1cd897 29 #define REG_P_L_THS_REG 0x14 // Portrait to Landscape Trip Angle is 29 degree
Rhyme 0:d895cd1cd897 30 #define REG_FF_MT_CFG 0x15 // Freefall/Motion function block configuration
Rhyme 0:d895cd1cd897 31 #define REG_FF_MT_SRC 0x16 // Freefall/Motion event source register
Rhyme 0:d895cd1cd897 32 #define REG_FF_MT_THS 0x17 // Freefall/Motion threshold register
Rhyme 0:d895cd1cd897 33 #define REG_FF_MT_COUNT 0x18 // Freefall/Motion debounce counter
Rhyme 0:d895cd1cd897 34 // TRANSIENT
Rhyme 0:d895cd1cd897 35 #define REG_TRANSIENT_CFG 0x1D // Transient functional block configuration
Rhyme 0:d895cd1cd897 36 #define REG_TRANSIENT_SRC 0x1E // Transient event status register
Rhyme 0:d895cd1cd897 37 #define REG_TRANSIENT_THS 0x1F // Transient event threshold
Rhyme 0:d895cd1cd897 38 #define REG_TRANSIENT_COUNT 0x20 // Transient debounce counter
Rhyme 0:d895cd1cd897 39 // PULSE
Rhyme 0:d895cd1cd897 40 #define REG_PULSE_CFG 0x21 // ELE, Double_XYZ or Single_XYZ
Rhyme 0:d895cd1cd897 41 #define REG_PULSE_SRC 0x22 // EA, Double_XYZ or Single_XYZ
Rhyme 0:d895cd1cd897 42 #define REG_PULSE_THSX 0x23 // X pulse threshold
Rhyme 0:d895cd1cd897 43 #define REG_PULSE_THSY 0x24 // Y pulse threshold
Rhyme 0:d895cd1cd897 44 #define REG_PULSE_THSZ 0x25 // Z pulse threshold
Rhyme 0:d895cd1cd897 45 #define REG_PULSE_TMLT 0x26 // Time limit for pulse
Rhyme 0:d895cd1cd897 46 #define REG_PULSE_LTCY 0x27 // Latency time for 2nd pulse
Rhyme 0:d895cd1cd897 47 #define REG_PULSE_WIND 0x28 // Window time for 2nd pulse
Rhyme 0:d895cd1cd897 48 #define REG_ASLP_COUNT 0x29 // Counter setting for Auto-SLEEP
Rhyme 0:d895cd1cd897 49 // Control Registers
Rhyme 0:d895cd1cd897 50 #define REG_CTRL_REG1 0x2A // ODR = 800Hz, STANDBY Mode
Rhyme 0:d895cd1cd897 51 #define REG_CTRL_REG2 0x2B // Sleep Enable, OS Modes, RST, ST
Rhyme 0:d895cd1cd897 52 #define REG_CTRL_REG3 0x2C // Wake from Sleep, IPOL, PP_OD
Rhyme 0:d895cd1cd897 53 #define REG_CTRL_REG4 0x2D // Interrupt enable register
Rhyme 0:d895cd1cd897 54 #define REG_CTRL_REG5 0x2E // Interrupt pin (INT1/INT2) map
Rhyme 0:d895cd1cd897 55 // User Offset
Rhyme 0:d895cd1cd897 56 #define REG_OFF_X 0x2F // X-axis offset adjust
Rhyme 0:d895cd1cd897 57 #define REG_OFF_Y 0x30 // Y-axis offset adjust
Rhyme 0:d895cd1cd897 58 #define REG_OFF_Z 0x31 // Z-axis offset adjust
Rhyme 0:d895cd1cd897 59
Rhyme 0:d895cd1cd897 60 // Value definitions
Rhyme 0:d895cd1cd897 61 #define BIT_TRIG_TRANS 0x20 // Transient interrupt trigger bit
Rhyme 0:d895cd1cd897 62 #define BIT_TRIG_LNDPRT 0x10 // Landscape/Portrati Orientation
Rhyme 0:d895cd1cd897 63 #define BIT_TRIG_PULSE 0x08 // Pulse interrupt trigger bit
Rhyme 0:d895cd1cd897 64 #define BIT_TRIG_FF_MT 0x04 // Freefall/Motion trigger bit
Rhyme 0:d895cd1cd897 65
Rhyme 0:d895cd1cd897 66 MMA8451Q::MMA8451Q(I2C *i2c, int addr) : m_addr(addr<<1) {
Rhyme 0:d895cd1cd897 67 // activate the peripheral
Rhyme 0:d895cd1cd897 68 p_i2c = i2c ;
Rhyme 0:d895cd1cd897 69 uint8_t data[2] = {REG_CTRL_REG1, 0x01};
Rhyme 0:d895cd1cd897 70 writeRegs(data, 2);
Rhyme 0:d895cd1cd897 71 }
Rhyme 0:d895cd1cd897 72
Rhyme 0:d895cd1cd897 73 MMA8451Q::~MMA8451Q() { }
Rhyme 0:d895cd1cd897 74
Rhyme 0:d895cd1cd897 75 int MMA8451Q::readRegs(int addr, uint8_t * data, int len)
Rhyme 0:d895cd1cd897 76 {
Rhyme 0:d895cd1cd897 77 char t[1] = {addr};
Rhyme 0:d895cd1cd897 78 int result ;
Rhyme 0:d895cd1cd897 79 __disable_irq() ; // Disable Interrupts
Rhyme 0:d895cd1cd897 80 result = p_i2c->write(m_addr, t, 1, true);
Rhyme 0:d895cd1cd897 81 if (result == 0) {
Rhyme 0:d895cd1cd897 82 result = p_i2c->read(m_addr, (char *)data, len);
Rhyme 0:d895cd1cd897 83 }
Rhyme 0:d895cd1cd897 84 __enable_irq() ; // Enable Interrupts
Rhyme 0:d895cd1cd897 85 return( result ) ;
Rhyme 0:d895cd1cd897 86 }
Rhyme 0:d895cd1cd897 87
Rhyme 0:d895cd1cd897 88 int MMA8451Q::writeRegs(uint8_t * data, int len)
Rhyme 0:d895cd1cd897 89 {
Rhyme 0:d895cd1cd897 90 int result ;
Rhyme 0:d895cd1cd897 91 __disable_irq() ; // Disable Interrupts
Rhyme 0:d895cd1cd897 92 result = p_i2c->write(m_addr, (char *)data, len);
Rhyme 0:d895cd1cd897 93 __enable_irq() ; // Enable Interrupts
Rhyme 0:d895cd1cd897 94 return( result ) ;
Rhyme 0:d895cd1cd897 95 }
Rhyme 0:d895cd1cd897 96
Rhyme 0:d895cd1cd897 97 int MMA8451Q::getAllRawData(int16_t value[])
Rhyme 0:d895cd1cd897 98 {
Rhyme 0:d895cd1cd897 99 int result ;
Rhyme 0:d895cd1cd897 100 uint8_t data[6] ;
Rhyme 0:d895cd1cd897 101 result = readRegs(REG_OUT_X_MSB, data, 6) ;
Rhyme 0:d895cd1cd897 102 if (result == 0) {
Rhyme 0:d895cd1cd897 103 value[0] = ((int16_t)((data[0] << 8) | data[1])) >> 2 ;
Rhyme 0:d895cd1cd897 104 value[1] = ((int16_t)((data[2] << 8) | data[3])) >> 2 ;
Rhyme 0:d895cd1cd897 105 value[2] = ((int16_t)((data[4] << 8) | data[5])) >> 2 ;
Rhyme 0:d895cd1cd897 106 }
Rhyme 0:d895cd1cd897 107 return( result ) ;
Rhyme 0:d895cd1cd897 108 }
Rhyme 0:d895cd1cd897 109
Rhyme 0:d895cd1cd897 110 int MMA8451Q::getAllData(float fvalue[])
Rhyme 0:d895cd1cd897 111 {
Rhyme 0:d895cd1cd897 112 int result ;
Rhyme 0:d895cd1cd897 113 uint8_t data[6] ;
Rhyme 0:d895cd1cd897 114 result = readRegs(REG_OUT_X_MSB, data, 6) ;
Rhyme 0:d895cd1cd897 115 if (result == 0) {
Rhyme 0:d895cd1cd897 116 fvalue[0] = (float)((int16_t)((data[0] << 8) | data[1])) / 16384.0 ;
Rhyme 0:d895cd1cd897 117 fvalue[1] = (float)((int16_t)((data[2] << 8) | data[3])) / 16384.0 ;
Rhyme 0:d895cd1cd897 118 fvalue[2] = (float)((int16_t)((data[4] << 8) | data[5])) / 16384.0 ;
Rhyme 0:d895cd1cd897 119 }
Rhyme 0:d895cd1cd897 120 return( result ) ;
Rhyme 0:d895cd1cd897 121 }
Rhyme 0:d895cd1cd897 122
Rhyme 0:d895cd1cd897 123 int16_t MMA8451Q::getRawData(uint8_t addr)
Rhyme 0:d895cd1cd897 124 {
Rhyme 0:d895cd1cd897 125 int16_t value ;
Rhyme 0:d895cd1cd897 126 uint8_t data[2] ;
Rhyme 0:d895cd1cd897 127 readRegs(addr, data, 2) ;
Rhyme 0:d895cd1cd897 128 value = ((int16_t)((data[0] << 8) | data[1])) >> 2 ;
Rhyme 0:d895cd1cd897 129 return( value ) ;
Rhyme 0:d895cd1cd897 130 }
Rhyme 0:d895cd1cd897 131
Rhyme 0:d895cd1cd897 132 int16_t MMA8451Q::getRawX(void)
Rhyme 0:d895cd1cd897 133 {
Rhyme 0:d895cd1cd897 134 int16_t value ;
Rhyme 0:d895cd1cd897 135 value = getRawData(REG_OUT_X_MSB) ;
Rhyme 0:d895cd1cd897 136 return( value ) ;
Rhyme 0:d895cd1cd897 137 }
Rhyme 0:d895cd1cd897 138
Rhyme 0:d895cd1cd897 139 int16_t MMA8451Q::getRawY(void)
Rhyme 0:d895cd1cd897 140 {
Rhyme 0:d895cd1cd897 141 int16_t value ;
Rhyme 0:d895cd1cd897 142 value = getRawData(REG_OUT_Y_MSB) ;
Rhyme 0:d895cd1cd897 143 return( value ) ;
Rhyme 0:d895cd1cd897 144 }
Rhyme 0:d895cd1cd897 145
Rhyme 0:d895cd1cd897 146 int16_t MMA8451Q::getRawZ(void)
Rhyme 0:d895cd1cd897 147 {
Rhyme 0:d895cd1cd897 148 int16_t value ;
Rhyme 0:d895cd1cd897 149 value = getRawData(REG_OUT_Z_MSB) ;
Rhyme 0:d895cd1cd897 150 return( value ) ;
Rhyme 0:d895cd1cd897 151 }
Rhyme 0:d895cd1cd897 152
Rhyme 0:d895cd1cd897 153 float MMA8451Q::getAccX(void)
Rhyme 0:d895cd1cd897 154 {
Rhyme 0:d895cd1cd897 155 return(((float)getRawX())/4096.0) ;
Rhyme 0:d895cd1cd897 156 }
Rhyme 0:d895cd1cd897 157
Rhyme 0:d895cd1cd897 158 float MMA8451Q::getAccY(void)
Rhyme 0:d895cd1cd897 159 {
Rhyme 0:d895cd1cd897 160 return(((float)getRawY())/4096.0) ;
Rhyme 0:d895cd1cd897 161 }
Rhyme 0:d895cd1cd897 162
Rhyme 0:d895cd1cd897 163 float MMA8451Q::getAccZ(void)
Rhyme 0:d895cd1cd897 164 {
Rhyme 0:d895cd1cd897 165 return(((float)getRawZ())/4096.0) ;
Rhyme 0:d895cd1cd897 166 }