Basically i glued Peter Drescher and Simon Ford libs in a GraphicsDisplay class, then derived TFT or LCD class (which inherits Protocols class), then the most derived ones (Inits), which are per-display and are the only part needed to be adapted to diff hw.
Dependents: afero_poc15_180216 afero_poc15_180223 afero_poc15_180302 afero_poc15_180403R ... more
Fork of UniGraphic by
UniGraphic for La Suno Version.
To go with La Suno, WatchDog Reset functions were added in ILI9341.
Protocols/SPI8.cpp
- Committer:
- Geremia
- Date:
- 2015-02-17
- Revision:
- 7:bb0383b91104
- Parent:
- 5:b222a9461d6b
- Child:
- 11:b842b8e332cb
File content as of revision 7:bb0383b91104:
/* mbed UniGraphic library - SPI8 protocol class * Copyright (c) 2015 Giuliano Dianda * Released under the MIT License: http://mbed.org/license/mit * * Derived work of: * * mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2013 Peter Drescher - DC2PD * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "SPI8.h" //#define USE_CS SPI8::SPI8(int Hz, PinName mosi, PinName miso, PinName sclk, PinName CS, PinName reset, PinName DC) : _CS(CS), _spi(mosi, miso, sclk), _reset(reset), _DC(DC) { _reset = 1; _DC=1; _CS=1; _spi.format(8,0); // 8 bit spi mode 0 // _spi.frequency(12000000); // 10 Mhz SPI clock, 12mhz for F411 _spi.frequency(Hz); hw_reset(); } void SPI8::wr_cmd8(unsigned char cmd) { #ifdef USE_CS _CS = 0; #endif _DC.write(0); // 0=cmd _spi.write(cmd); // write 8bit #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_data8(unsigned char data) { #ifdef USE_CS _CS = 0; #endif _DC.write(1); // 1=data _spi.write(data); // write 8bit #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_cmd16(unsigned short cmd) { #ifdef USE_CS _CS = 0; #endif _DC.write(0); // 0=cmd _spi.write(cmd>>8); // write 8bit _spi.write(cmd&0xFF); // write 8bit #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_data16(unsigned short data) { #ifdef USE_CS _CS = 0; #endif _DC.write(1); // 1=data _spi.write(data>>8); // write 8bit _spi.write(data&0xFF); // write 8bit #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_gram(unsigned short data) { #ifdef USE_CS _CS = 0; #endif _DC.write(1); // 1=data _spi.write(data>>8); // write 8bit _spi.write(data&0xFF); // write 8bit #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_gram(unsigned short data, unsigned int count) { #ifdef USE_CS _CS = 0; #endif _DC.write(1); // 1=data if((data>>8)==(data&0xFF)) { count<<=1; while(count) { _spi.write(data); // write 8bit count--; } } else { while(count) { _spi.write(data>>8); // write 8bit _spi.write(data&0xFF); // write 8bit count--; } } #ifdef USE_CS _CS = 1; #endif } void SPI8::wr_grambuf(unsigned short* data, unsigned int lenght) { #ifdef USE_CS _CS = 0; #endif _DC.write(1); // 1=data while(lenght) { _spi.write((*data)>>8); // write 8bit _spi.write((*data)&0xFF); // write 8bit data++; lenght--; } #ifdef USE_CS _CS = 1; #endif } unsigned short SPI8::rd_gram() { #ifdef USE_CS _CS = 0; #endif unsigned int r=0; _DC.write(1); // 1=data _spi.write(0); // whole first byte is dummy r |= _spi.write(0); r <<= 8; r |= _spi.write(0); r <<= 8; r |= _spi.write(0); _CS = 1; // force CS HIG to interupt the "read state" #ifndef USE_CS //if CS is not used, force fixed LOW again _CS = 0; #endif // gram is 18bit/pixel, if you set 16bit/pixel (cmd 3A), during writing the 16bits are expanded to 18bit // during reading, you read the raw 18bit gram r = RGB18to16((r&0xFC0000)>>16, (r&0xFC00)>>8, r&0xFC);// 18bit pixel, rrrrrr00_gggggg00_bbbbbb00, converted to 16bit return (unsigned short)r; } unsigned int SPI8::rd_reg_data32(unsigned char reg) { #ifdef USE_CS _CS = 0; #endif wr_cmd8(reg); unsigned int r=0; _DC.write(1); // 1=data r |= _spi.write(0); // we get only 7bit valid, first bit was the dummy cycle r <<= 8; r |= _spi.write(0); r <<= 8; r |= _spi.write(0); r <<= 8; r |= _spi.write(0); r <<= 1; // 32bits are aligned, now collecting bit_0 r |= (_spi.write(0) >> 7); // we clocked 7 more bit so ILI waiting for 8th, we need to reset spi bus _CS = 1; // force CS HIG to interupt the cmd #ifndef USE_CS //if CS is not used, force fixed LOW again _CS = 0; #endif return r; } unsigned int SPI8::rd_extcreg_data32(unsigned char reg, unsigned char SPIreadenablecmd) { unsigned int r=0; for(int regparam=1; regparam<4; regparam++) // when reading EXTC regs, first parameter is always dummy, so start with 1 { wr_cmd8(SPIreadenablecmd); // spi-in enable cmd, 0xD9 (ili9341) or 0xFB (ili9488) or don't know wr_data8(0xF0|regparam); // in low nibble specify which reg parameter we want wr_cmd8(reg); // now send cmd (select register we want to read) _DC.write(1); // 1=data r <<= 8; r |= _spi.write(0); // r = _spi.write(0) >> 8; for 16bit } _CS = 1; // force CS HIG to interupt the cmd #ifndef USE_CS //if CS is not used, force fixed LOW again _CS = 0; #endif return r; } void SPI8::hw_reset() { wait_ms(15); _DC = 1; // _CS = 1; _CS = 0; _reset = 0; // display reset wait_us(50); _reset = 1; // end reset wait_ms(15); #ifndef USE_CS _CS=0; // put CS low now and forever #endif } void SPI8::BusEnable(bool enable) { _CS = enable ? 0:1; }