LSM6DSO accelerometer and gyroscope sensor library
Dependencies: X_NUCLEO_COMMON ST_INTERFACES
LSM6DSOSensor.cpp
- Committer:
- cparata
- Date:
- 2019-06-03
- Revision:
- 2:4d14e9edf37e
- Parent:
- 0:6d69e896ce38
- Child:
- 3:4274d9103f1d
File content as of revision 2:4d14e9edf37e:
/** ****************************************************************************** * @file LSM6DSOSensor.cpp * @author SRA * @version V1.0.0 * @date February 2019 * @brief Implementation of an LSM6DSO Inertial Measurement Unit (IMU) 6 axes * sensor. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2019 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "LSM6DSOSensor.h" /* Class Implementation ------------------------------------------------------*/ /** Constructor * @param spi object of an helper class which handles the SPI peripheral * @param cs_pin the chip select pin * @param int1_pin the interrupt 1 pin * @param int2_pin the interrupt 2 pin * @param spi_type the SPI type */ LSM6DSOSensor::LSM6DSOSensor(SPI *spi, PinName cs_pin, PinName int1_pin, PinName int2_pin, SPI_type_t spi_type) : _dev_spi(spi), _cs_pin(cs_pin), _int1_irq(int1_pin), _int2_irq(int2_pin), _spi_type(spi_type) { assert (spi); if (cs_pin == NC) { printf ("ERROR LSM6DSO CS MUST NOT BE NC\n\r"); _dev_spi = NULL; _dev_i2c = NULL; return; } _reg_ctx.write_reg = LSM6DSO_io_write; _reg_ctx.read_reg = LSM6DSO_io_read; _reg_ctx.handle = (void *)this; _cs_pin = 1; _dev_i2c = NULL; _address = 0; if (_spi_type == SPI3W) { /* Enable SPI 3-Wires on the component */ uint8_t data = 0x0C; lsm6dso_write_reg(&_reg_ctx, LSM6DSO_CTRL3_C, &data, 1); } } /** Constructor * @param i2c object of an helper class which handles the I2C peripheral * @param address the address of the component's instance * @param int1_pin the interrupt 1 pin * @param int2_pin the interrupt 2 pin */ LSM6DSOSensor::LSM6DSOSensor(DevI2C *i2c, uint8_t address, PinName int1_pin, PinName int2_pin) : _dev_i2c(i2c), _address(address), _cs_pin(NC), _int1_irq(int1_pin), _int2_irq(int2_pin) { assert (i2c); _dev_spi = NULL; _reg_ctx.write_reg = LSM6DSO_io_write; _reg_ctx.read_reg = LSM6DSO_io_read; _reg_ctx.handle = (void *)this; } /** * @brief Initializing the component * @param init pointer to device specific initalization structure * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::init(void *init) { /* Disable I3C */ if (lsm6dso_i3c_disable_set(&_reg_ctx, LSM6DSO_I3C_DISABLE) != 0) { return 1; } /* Enable register address automatically incremented during a multiple byte access with a serial interface. */ if (lsm6dso_auto_increment_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable BDU */ if (lsm6dso_block_data_update_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* FIFO mode selection */ if (lsm6dso_fifo_mode_set(&_reg_ctx, LSM6DSO_BYPASS_MODE) != 0) { return 1; } /* Output data rate selection - power down. */ if (lsm6dso_xl_data_rate_set(&_reg_ctx, LSM6DSO_XL_ODR_OFF) != 0) { return 1; } /* Full scale selection. */ if (lsm6dso_xl_full_scale_set(&_reg_ctx, LSM6DSO_2g) != 0) { return 1; } /* Output data rate selection - power down. */ if (lsm6dso_gy_data_rate_set(&_reg_ctx, LSM6DSO_GY_ODR_OFF) != 0) { return 1; } /* Full scale selection. */ if (lsm6dso_gy_full_scale_set(&_reg_ctx, LSM6DSO_2000dps) != 0) { return 1; } /* Select default output data rate. */ _x_last_odr = LSM6DSO_XL_ODR_104Hz; /* Select default output data rate. */ _g_last_odr = LSM6DSO_GY_ODR_104Hz; _x_is_enabled = 0; _g_is_enabled = 0; return 0; } /** * @brief Read component ID * @param id the WHO_AM_I value * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::read_id(uint8_t *id) { if (lsm6dso_device_id_get(&_reg_ctx, id) != 0) { return 1; } return 0; } /** * @brief Enable the LSM6DSO accelerometer sensor * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_x() { /* Check if the component is already enabled */ if (_x_is_enabled == 1U) { return 0; } /* Output data rate selection. */ if (lsm6dso_xl_data_rate_set(&_reg_ctx, _x_last_odr) != 0) { return 1; } _x_is_enabled = 1; return 0; } /** * @brief Disable the LSM6DSO accelerometer sensor * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_x() { /* Check if the component is already disabled */ if (_x_is_enabled == 0U) { return 0; } /* Get current output data rate. */ if (lsm6dso_xl_data_rate_get(&_reg_ctx, &_x_last_odr) != 0) { return 1; } /* Output data rate selection - power down. */ if (lsm6dso_xl_data_rate_set(&_reg_ctx, LSM6DSO_XL_ODR_OFF) != 0) { return 1; } _x_is_enabled = 0; return 0; } /** * @brief Get the LSM6DSO accelerometer sensor sensitivity * @param sensitivity pointer where the sensitivity is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_sensitivity(float *sensitivity) { int ret = 0; lsm6dso_fs_xl_t full_scale; /* Read actual full scale selection from sensor. */ if (lsm6dso_xl_full_scale_get(&_reg_ctx, &full_scale) != 0) { return 1; } /* Store the sensitivity based on actual full scale. */ switch (full_scale) { case LSM6DSO_2g: *sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_2G; break; case LSM6DSO_4g: *sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_4G; break; case LSM6DSO_8g: *sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_8G; break; case LSM6DSO_16g: *sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_16G; break; default: ret = 1; break; } return ret; } /** * @brief Get the LSM6DSO accelerometer sensor output data rate * @param odr pointer where the output data rate is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_odr(float *odr) { int ret = 0; lsm6dso_odr_xl_t odr_low_level; /* Get current output data rate. */ if (lsm6dso_xl_data_rate_get(&_reg_ctx, &odr_low_level) != 0) { return 1; } switch (odr_low_level) { case LSM6DSO_XL_ODR_OFF: *odr = 0.0f; break; case LSM6DSO_XL_ODR_6Hz5: *odr = 6.5f; break; case LSM6DSO_XL_ODR_12Hz5: *odr = 12.5f; break; case LSM6DSO_XL_ODR_26Hz: *odr = 26.0f; break; case LSM6DSO_XL_ODR_52Hz: *odr = 52.0f; break; case LSM6DSO_XL_ODR_104Hz: *odr = 104.0f; break; case LSM6DSO_XL_ODR_208Hz: *odr = 208.0f; break; case LSM6DSO_XL_ODR_417Hz: *odr = 417.0f; break; case LSM6DSO_XL_ODR_833Hz: *odr = 833.0f; break; case LSM6DSO_XL_ODR_1667Hz: *odr = 1667.0f; break; case LSM6DSO_XL_ODR_3333Hz: *odr = 3333.0f; break; case LSM6DSO_XL_ODR_6667Hz: *odr = 6667.0f; break; default: ret = 1; break; } return ret; } /** * @brief Set the LSM6DSO accelerometer sensor output data rate * @param odr the output data rate value to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_x_odr(float odr) { /* Check if the component is enabled */ if (_x_is_enabled == 1U) { return set_x_odr_when_enabled(odr); } else { return set_x_odr_when_disabled(odr); } } /** * @brief Set the LSM6DSO accelerometer sensor output data rate when enabled * @param odr the functional output data rate to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_x_odr_when_enabled(float odr) { lsm6dso_odr_xl_t new_odr; new_odr = (odr <= 12.5f) ? LSM6DSO_XL_ODR_12Hz5 : (odr <= 26.0f) ? LSM6DSO_XL_ODR_26Hz : (odr <= 52.0f) ? LSM6DSO_XL_ODR_52Hz : (odr <= 104.0f) ? LSM6DSO_XL_ODR_104Hz : (odr <= 208.0f) ? LSM6DSO_XL_ODR_208Hz : (odr <= 417.0f) ? LSM6DSO_XL_ODR_417Hz : (odr <= 833.0f) ? LSM6DSO_XL_ODR_833Hz : (odr <= 1667.0f) ? LSM6DSO_XL_ODR_1667Hz : (odr <= 3333.0f) ? LSM6DSO_XL_ODR_3333Hz : LSM6DSO_XL_ODR_6667Hz; /* Output data rate selection. */ if (lsm6dso_xl_data_rate_set(&_reg_ctx, new_odr) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO accelerometer sensor output data rate when disabled * @param odr the functional output data rate to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_x_odr_when_disabled(float odr) { _x_last_odr = (odr <= 12.5f) ? LSM6DSO_XL_ODR_12Hz5 : (odr <= 26.0f) ? LSM6DSO_XL_ODR_26Hz : (odr <= 52.0f) ? LSM6DSO_XL_ODR_52Hz : (odr <= 104.0f) ? LSM6DSO_XL_ODR_104Hz : (odr <= 208.0f) ? LSM6DSO_XL_ODR_208Hz : (odr <= 417.0f) ? LSM6DSO_XL_ODR_417Hz : (odr <= 833.0f) ? LSM6DSO_XL_ODR_833Hz : (odr <= 1667.0f) ? LSM6DSO_XL_ODR_1667Hz : (odr <= 3333.0f) ? LSM6DSO_XL_ODR_3333Hz : LSM6DSO_XL_ODR_6667Hz; return 0; } /** * @brief Get the LSM6DSO accelerometer sensor full scale * @param full_scale pointer where the full scale is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_fs(float *full_scale) { int ret = 0; lsm6dso_fs_xl_t fs_low_level; /* Read actual full scale selection from sensor. */ if (lsm6dso_xl_full_scale_get(&_reg_ctx, &fs_low_level) != 0) { return 1; } switch (fs_low_level) { case LSM6DSO_2g: *full_scale = 2.0f; break; case LSM6DSO_4g: *full_scale = 4.0f; break; case LSM6DSO_8g: *full_scale = 8.0f; break; case LSM6DSO_16g: *full_scale = 16.0f; break; default: ret = 1; break; } return ret; } /** * @brief Set the LSM6DSO accelerometer sensor full scale * @param full_scale the functional full scale to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_x_fs(float full_scale) { lsm6dso_fs_xl_t new_fs; /* Seems like MISRA C-2012 rule 14.3a violation but only from single file statical analysis point of view because the parameter passed to the function is not known at the moment of analysis */ new_fs = (full_scale <= 2.0f) ? LSM6DSO_2g : (full_scale <= 4.0f) ? LSM6DSO_4g : (full_scale <= 8.0f) ? LSM6DSO_8g : LSM6DSO_16g; if (lsm6dso_xl_full_scale_set(&_reg_ctx, new_fs) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO accelerometer sensor raw axes * @param value pointer where the raw values of the axes are written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_axes_raw(int16_t *value) { axis3bit16_t data_raw; /* Read raw data values. */ if (lsm6dso_acceleration_raw_get(&_reg_ctx, data_raw.u8bit) != 0) { return 1; } /* Format the data. */ value[0] = data_raw.i16bit[0]; value[1] = data_raw.i16bit[1]; value[2] = data_raw.i16bit[2]; return 0; } /** * @brief Get the LSM6DSO accelerometer sensor axes * @param acceleration pointer where the values of the axes are written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_axes(int32_t *acceleration) { axis3bit16_t data_raw; float sensitivity = 0.0f; /* Read raw data values. */ if (lsm6dso_acceleration_raw_get(&_reg_ctx, data_raw.u8bit) != 0) { return 1; } /* Get LSM6DSO actual sensitivity. */ if (get_x_sensitivity(&sensitivity) != 0) { return 1; } /* Calculate the data. */ acceleration[0] = (int32_t)((float)((float)data_raw.i16bit[0] * sensitivity)); acceleration[1] = (int32_t)((float)((float)data_raw.i16bit[1] * sensitivity)); acceleration[2] = (int32_t)((float)((float)data_raw.i16bit[2] * sensitivity)); return 0; } /** * @brief Enable the LSM6DSO gyroscope sensor * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_g() { /* Check if the component is already enabled */ if (_g_is_enabled == 1U) { return 0; } /* Output data rate selection. */ if (lsm6dso_gy_data_rate_set(&_reg_ctx, _g_last_odr) != 0) { return 1; } _g_is_enabled = 1; return 0; } /** * @brief Disable the LSM6DSO gyroscope sensor * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_g() { /* Check if the component is already disabled */ if (_g_is_enabled == 0U) { return 0; } /* Get current output data rate. */ if (lsm6dso_gy_data_rate_get(&_reg_ctx, &_g_last_odr) != 0) { return 1; } /* Output data rate selection - power down. */ if (lsm6dso_gy_data_rate_set(&_reg_ctx, LSM6DSO_GY_ODR_OFF) != 0) { return 1; } _g_is_enabled = 0; return 0; } /** * @brief Get the LSM6DSO gyroscope sensor sensitivity * @param sensitivity pointer where the sensitivity is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_sensitivity(float *sensitivity) { int ret = 0; lsm6dso_fs_g_t full_scale; /* Read actual full scale selection from sensor. */ if (lsm6dso_gy_full_scale_get(&_reg_ctx, &full_scale) != 0) { return 1; } /* Store the sensitivity based on actual full scale. */ switch (full_scale) { case LSM6DSO_125dps: *sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_125DPS; break; case LSM6DSO_250dps: *sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_250DPS; break; case LSM6DSO_500dps: *sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_500DPS; break; case LSM6DSO_1000dps: *sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_1000DPS; break; case LSM6DSO_2000dps: *sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_2000DPS; break; default: ret = 1; break; } return ret; } /** * @brief Get the LSM6DSO gyroscope sensor output data rate * @param odr pointer where the output data rate is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_odr(float *odr) { int ret = 0; lsm6dso_odr_g_t odr_low_level; /* Get current output data rate. */ if (lsm6dso_gy_data_rate_get(&_reg_ctx, &odr_low_level) != 0) { return 1; } switch (odr_low_level) { case LSM6DSO_GY_ODR_OFF: *odr = 0.0f; break; case LSM6DSO_GY_ODR_12Hz5: *odr = 12.5f; break; case LSM6DSO_GY_ODR_26Hz: *odr = 26.0f; break; case LSM6DSO_GY_ODR_52Hz: *odr = 52.0f; break; case LSM6DSO_GY_ODR_104Hz: *odr = 104.0f; break; case LSM6DSO_GY_ODR_208Hz: *odr = 208.0f; break; case LSM6DSO_GY_ODR_417Hz: *odr = 417.0f; break; case LSM6DSO_GY_ODR_833Hz: *odr = 833.0f; break; case LSM6DSO_GY_ODR_1667Hz: *odr = 1667.0f; break; case LSM6DSO_GY_ODR_3333Hz: *odr = 3333.0f; break; case LSM6DSO_GY_ODR_6667Hz: *odr = 6667.0f; break; default: ret = 1; break; } return ret; } /** * @brief Set the LSM6DSO gyroscope sensor output data rate * @param odr the output data rate value to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_g_odr(float odr) { /* Check if the component is enabled */ if (_g_is_enabled == 1U) { return set_g_odr_when_enabled(odr); } else { return set_g_odr_when_disabled(odr); } } /** * @brief Set the LSM6DSO gyroscope sensor output data rate when enabled * @param odr the functional output data rate to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_g_odr_when_enabled(float odr) { lsm6dso_odr_g_t new_odr; new_odr = (odr <= 12.5f) ? LSM6DSO_GY_ODR_12Hz5 : (odr <= 26.0f) ? LSM6DSO_GY_ODR_26Hz : (odr <= 52.0f) ? LSM6DSO_GY_ODR_52Hz : (odr <= 104.0f) ? LSM6DSO_GY_ODR_104Hz : (odr <= 208.0f) ? LSM6DSO_GY_ODR_208Hz : (odr <= 417.0f) ? LSM6DSO_GY_ODR_417Hz : (odr <= 833.0f) ? LSM6DSO_GY_ODR_833Hz : (odr <= 1667.0f) ? LSM6DSO_GY_ODR_1667Hz : (odr <= 3333.0f) ? LSM6DSO_GY_ODR_3333Hz : LSM6DSO_GY_ODR_6667Hz; /* Output data rate selection. */ if (lsm6dso_gy_data_rate_set(&_reg_ctx, new_odr) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO gyroscope sensor output data rate when disabled * @param odr the functional output data rate to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_g_odr_when_disabled(float odr) { _g_last_odr = (odr <= 12.5f) ? LSM6DSO_GY_ODR_12Hz5 : (odr <= 26.0f) ? LSM6DSO_GY_ODR_26Hz : (odr <= 52.0f) ? LSM6DSO_GY_ODR_52Hz : (odr <= 104.0f) ? LSM6DSO_GY_ODR_104Hz : (odr <= 208.0f) ? LSM6DSO_GY_ODR_208Hz : (odr <= 417.0f) ? LSM6DSO_GY_ODR_417Hz : (odr <= 833.0f) ? LSM6DSO_GY_ODR_833Hz : (odr <= 1667.0f) ? LSM6DSO_GY_ODR_1667Hz : (odr <= 3333.0f) ? LSM6DSO_GY_ODR_3333Hz : LSM6DSO_GY_ODR_6667Hz; return 0; } /** * @brief Get the LSM6DSO gyroscope sensor full scale * @param full_scale pointer where the full scale is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_fs(float *full_scale) { int ret = 0; lsm6dso_fs_g_t fs_low_level; /* Read actual full scale selection from sensor. */ if (lsm6dso_gy_full_scale_get(&_reg_ctx, &fs_low_level) != 0) { return 1; } switch (fs_low_level) { case LSM6DSO_125dps: *full_scale = 125.0f; break; case LSM6DSO_250dps: *full_scale = 250.0f; break; case LSM6DSO_500dps: *full_scale = 500.0f; break; case LSM6DSO_1000dps: *full_scale = 1000.0f; break; case LSM6DSO_2000dps: *full_scale = 2000.0f; break; default: ret = 1; break; } return ret; } /** * @brief Set the LSM6DSO gyroscope sensor full scale * @param full_scale the functional full scale to be set * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_g_fs(float full_scale) { lsm6dso_fs_g_t new_fs; new_fs = (full_scale <= 125.0f) ? LSM6DSO_125dps : (full_scale <= 250.0f) ? LSM6DSO_250dps : (full_scale <= 500.0f) ? LSM6DSO_500dps : (full_scale <= 1000.0f) ? LSM6DSO_1000dps : LSM6DSO_2000dps; if (lsm6dso_gy_full_scale_set(&_reg_ctx, new_fs) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO gyroscope sensor raw axes * @param value pointer where the raw values of the axes are written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_axes_raw(int16_t *value) { axis3bit16_t data_raw; /* Read raw data values. */ if (lsm6dso_angular_rate_raw_get(&_reg_ctx, data_raw.u8bit) != 0) { return 1; } /* Format the data. */ value[0] = data_raw.i16bit[0]; value[1] = data_raw.i16bit[1]; value[2] = data_raw.i16bit[2]; return 0; } /** * @brief Get the LSM6DSO gyroscope sensor axes * @param angular_rate pointer where the values of the axes are written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_axes(int32_t *angular_rate) { axis3bit16_t data_raw; float sensitivity; /* Read raw data values. */ if (lsm6dso_angular_rate_raw_get(&_reg_ctx, data_raw.u8bit) != 0) { return 1; } /* Get LSM6DSO actual sensitivity. */ if (get_g_sensitivity(&sensitivity) != 0) { return 1; } /* Calculate the data. */ angular_rate[0] = (int32_t)((float)((float)data_raw.i16bit[0] * sensitivity)); angular_rate[1] = (int32_t)((float)((float)data_raw.i16bit[1] * sensitivity)); angular_rate[2] = (int32_t)((float)((float)data_raw.i16bit[2] * sensitivity)); return 0; } /** * @brief Get the LSM6DSO register value * @param reg address to be read * @param data pointer where the value is written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::read_reg(uint8_t reg, uint8_t *data) { if (lsm6dso_read_reg(&_reg_ctx, reg, data, 1) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO register value * @param reg address to be written * @param data value to be written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::write_reg(uint8_t reg, uint8_t data) { if (lsm6dso_write_reg(&_reg_ctx, reg, &data, 1) != 0) { return 1; } return 0; } /** * @brief Set the interrupt latch * @param status value to be written * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_interrupt_latch(uint8_t status) { if (status > 1U) { return 1; } if (lsm6dso_int_notification_set(&_reg_ctx, (lsm6dso_lir_t)status) != 0) { return 1; } return 0; } /** * @brief Enable free fall detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_free_fall_detection(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(416.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* FF_DUR setting */ if (lsm6dso_ff_dur_set(&_reg_ctx, 0x06) != 0) { return 1; } /* WAKE_DUR setting */ if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } /* SLEEP_DUR setting */ if (lsm6dso_act_sleep_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } /* FF_THS setting */ if (lsm6dso_ff_threshold_set(&_reg_ctx, LSM6DSO_FF_TSH_312mg) != 0) { return 1; } /* Enable free fall event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_ff = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_ff = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable free fall detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_free_fall_detection() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable free fall event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_ff = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_ff = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* FF_DUR setting */ if (lsm6dso_ff_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } /* FF_THS setting */ if (lsm6dso_ff_threshold_set(&_reg_ctx, LSM6DSO_FF_TSH_156mg) != 0) { return 1; } return 0; } /** * @brief Set free fall threshold * @param thr free fall detection threshold * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_free_fall_threshold(uint8_t thr) { if (lsm6dso_ff_threshold_set(&_reg_ctx, (lsm6dso_ff_ths_t)thr) != 0) { return 1; } return 0; } /** * @brief Set free fall duration * @param dur free fall detection duration * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_free_fall_duration(uint8_t dur) { if (lsm6dso_ff_dur_set(&_reg_ctx, dur) != 0) { return 1; } return 0; } /** * @brief Enable pedometer * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_pedometer() { lsm6dso_pin_int1_route_t val; /* Output Data Rate selection */ if (set_x_odr(26.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* Enable pedometer algorithm. */ if (lsm6dso_pedo_sens_set(&_reg_ctx, LSM6DSO_PEDO_BASE_MODE) != 0) { return 1; } /* Enable step detector on INT1 pin */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val) != 0) { return 1; } val.emb_func_int1.int1_step_detector = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val) != 0) { return 1; } return 0; } /** * @brief Disable pedometer * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_pedometer() { lsm6dso_pin_int1_route_t val1; /* Disable step detector on INT1 pin */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.emb_func_int1.int1_step_detector = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } /* Disable pedometer algorithm. */ if (lsm6dso_pedo_sens_set(&_reg_ctx, LSM6DSO_PEDO_DISABLE) != 0) { return 1; } return 0; } /** * @brief Get step count * @param step_count step counter * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_step_counter(uint16_t *step_count) { if (lsm6dso_number_of_steps_get(&_reg_ctx, (uint8_t *)step_count) != 0) { return 1; } return 0; } /** * @brief Enable step counter reset * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::reset_step_counter() { if (lsm6dso_steps_reset(&_reg_ctx) != 0) { return 1; } return 0; } /** * @brief Enable tilt detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_tilt_detection(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(26.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* Enable tilt calculation. */ if (lsm6dso_tilt_sens_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable tilt event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.emb_func_int1.int1_tilt = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.emb_func_int2.int2_tilt = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable tilt detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_tilt_detection() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable tilt event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.emb_func_int1.int1_tilt = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.emb_func_int2.int2_tilt = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* Disable tilt calculation. */ if (lsm6dso_tilt_sens_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } return 0; } /** * @brief Enable wake up detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_wake_up_detection(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(416.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* WAKE_DUR setting */ if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Set wake up threshold. */ if (lsm6dso_wkup_threshold_set(&_reg_ctx, 0x02) != 0) { return 1; } /* Enable wake up event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_wu = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_wu = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable wake up detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_wake_up_detection() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable wake up event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_wu = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_wu = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* Reset wake up threshold. */ if (lsm6dso_wkup_threshold_set(&_reg_ctx, 0x00) != 0) { return 1; } /* WAKE_DUR setting */ if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } return 0; } /** * @brief Set wake up threshold * @param thr wake up detection threshold * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_wake_up_threshold(uint8_t thr) { /* Set wake up threshold. */ if (lsm6dso_wkup_threshold_set(&_reg_ctx, thr) != 0) { return 1; } return 0; } /** * @brief Set wake up duration * @param dur wake up detection duration * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_wake_up_duration(uint8_t dur) { /* Set wake up duration. */ if (lsm6dso_wkup_dur_set(&_reg_ctx, dur) != 0) { return 1; } return 0; } /** * @brief Enable single tap detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_single_tap_detection(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(416.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* Enable X direction in tap recognition. */ if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable Y direction in tap recognition. */ if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable Z direction in tap recognition. */ if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Set tap threshold. */ if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x08) != 0) { return 1; } /* Set tap shock time window. */ if (lsm6dso_tap_shock_set(&_reg_ctx, 0x02) != 0) { return 1; } /* Set tap quiet time window. */ if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x01) != 0) { return 1; } /* _NOTE_: Tap duration time window - don't care for single tap. */ /* _NOTE_: Single/Double Tap event - don't care of this flag for single tap. */ /* Enable single tap event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_single_tap = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_single_tap = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable single tap detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_single_tap_detection() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable single tap event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_single_tap = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_single_tap = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* Reset tap quiet time window. */ if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Reset tap shock time window. */ if (lsm6dso_tap_shock_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Reset tap threshold. */ if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Disable Z direction in tap recognition. */ if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } /* Disable Y direction in tap recognition. */ if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } /* Disable X direction in tap recognition. */ if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } return 0; } /** * @brief Enable double tap detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_double_tap_detection(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(416.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* Enable X direction in tap recognition. */ if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable Y direction in tap recognition. */ if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Enable Z direction in tap recognition. */ if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_ENABLE) != 0) { return 1; } /* Set tap threshold. */ if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x08) != 0) { return 1; } /* Set tap shock time window. */ if (lsm6dso_tap_shock_set(&_reg_ctx, 0x03) != 0) { return 1; } /* Set tap quiet time window. */ if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x03) != 0) { return 1; } /* Set tap duration time window. */ if (lsm6dso_tap_dur_set(&_reg_ctx, 0x08) != 0) { return 1; } /* Single and double tap enabled. */ if (lsm6dso_tap_mode_set(&_reg_ctx, LSM6DSO_BOTH_SINGLE_DOUBLE) != 0) { return 1; } /* Enable double tap event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_double_tap = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_double_tap = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable double tap detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_double_tap_detection() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable double tap event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_double_tap = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_double_tap = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* Only single tap enabled. */ if (lsm6dso_tap_mode_set(&_reg_ctx, LSM6DSO_ONLY_SINGLE) != 0) { return 1; } /* Reset tap duration time window. */ if (lsm6dso_tap_dur_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Reset tap quiet time window. */ if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Reset tap shock time window. */ if (lsm6dso_tap_shock_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Reset tap threshold. */ if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x00) != 0) { return 1; } /* Disable Z direction in tap recognition. */ if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } /* Disable Y direction in tap recognition. */ if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } /* Disable X direction in tap recognition. */ if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_DISABLE) != 0) { return 1; } return 0; } /** * @brief Set tap threshold * @param thr tap threshold * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_tap_threshold(uint8_t thr) { /* Set tap threshold. */ if (lsm6dso_tap_threshold_x_set(&_reg_ctx, thr) != 0) { return 1; } return 0; } /** * @brief Set tap shock time * @param time tap shock time * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_tap_shock_time(uint8_t time) { /* Set tap shock time window. */ if (lsm6dso_tap_shock_set(&_reg_ctx, time) != 0) { return 1; } return 0; } /** * @brief Set tap quiet time * @param time tap quiet time * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_tap_quiet_time(uint8_t time) { /* Set tap quiet time window. */ if (lsm6dso_tap_quiet_set(&_reg_ctx, time) != 0) { return 1; } return 0; } /** * @brief Set tap duration time * @param time tap duration time * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_tap_duration_time(uint8_t time) { /* Set tap duration time window. */ if (lsm6dso_tap_dur_set(&_reg_ctx, time) != 0) { return 1; } return 0; } /** * @brief Enable 6D orientation detection * @param int_pin interrupt pin line to be used * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::enable_6d_orientation(LSM6DSO_Interrupt_Pin_t int_pin) { int ret = 0; lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Output Data Rate selection */ if (set_x_odr(416.0f) != 0) { return 1; } /* Full scale selection */ if (set_x_fs(2.0f) != 0) { return 1; } /* 6D orientation enabled. */ if (lsm6dso_6d_threshold_set(&_reg_ctx, LSM6DSO_DEG_60) != 0) { return 1; } /* Enable 6D orientation event on either INT1 or INT2 pin */ switch (int_pin) { case LSM6DSO_INT1_PIN: if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_6d = PROPERTY_ENABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } break; case LSM6DSO_INT2_PIN: if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_6d = PROPERTY_ENABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } break; default: ret = 1; break; } return ret; } /** * @brief Disable 6D orientation detection * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::disable_6d_orientation() { lsm6dso_pin_int1_route_t val1; lsm6dso_pin_int2_route_t val2; /* Disable 6D orientation event on both INT1 and INT2 pins */ if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) { return 1; } val1.md1_cfg.int1_6d = PROPERTY_DISABLE; if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) { return 1; } if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) { return 1; } val2.md2_cfg.int2_6d = PROPERTY_DISABLE; if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) { return 1; } /* Reset 6D orientation. */ if (lsm6dso_6d_threshold_set(&_reg_ctx, LSM6DSO_DEG_80) != 0) { return 1; } return 0; } /** * @brief Set 6D orientation threshold * @param thr 6D Orientation detection threshold * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_6d_orientation_threshold(uint8_t thr) { if (lsm6dso_6d_threshold_set(&_reg_ctx, (lsm6dso_sixd_ths_t)thr) != 0) { return 1; } return 0; } /** * @brief Get the status of XLow orientation * @param xl the status of XLow orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_xl(uint8_t *xl) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *xl = data.xl; return 0; } /** * @brief Get the status of XHigh orientation * @param xh the status of XHigh orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_xh(uint8_t *xh) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *xh = data.xh; return 0; } /** * @brief Get the status of YLow orientation * @param yl the status of YLow orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_yl(uint8_t *yl) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *yl = data.yl; return 0; } /** * @brief Get the status of YHigh orientation * @param yh the status of YHigh orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_yh(uint8_t *yh) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *yh = data.yh; return 0; } /** * @brief Get the status of ZLow orientation * @param zl the status of ZLow orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_zl(uint8_t *zl) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *zl = data.zl; return 0; } /** * @brief Get the status of ZHigh orientation * @param zh the status of ZHigh orientation * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_6d_orientation_zh(uint8_t *zh) { lsm6dso_d6d_src_t data; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) { return 1; } *zh = data.zh; return 0; } /** * @brief Get the LSM6DSO ACC data ready bit value * @param status the status of data ready bit * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_x_drdy_status(uint8_t *status) { if (lsm6dso_xl_flag_data_ready_get(&_reg_ctx, status) != 0) { return 1; } return 0; } /** * @brief Get the status of all hardware events * @param status the status of all hardware events * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_event_status(LSM6DSO_Event_Status_t *status) { uint8_t tilt_ia = 0U; lsm6dso_wake_up_src_t wake_up_src; lsm6dso_tap_src_t tap_src; lsm6dso_d6d_src_t d6d_src; lsm6dso_emb_func_src_t func_src; lsm6dso_md1_cfg_t md1_cfg; lsm6dso_md2_cfg_t md2_cfg; lsm6dso_emb_func_int1_t int1_ctrl; lsm6dso_emb_func_int2_t int2_ctrl; (void)memset((void *)status, 0x0, sizeof(LSM6DSO_Event_Status_t)); if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_WAKE_UP_SRC, (uint8_t *)&wake_up_src, 1) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_TAP_SRC, (uint8_t *)&tap_src, 1) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&d6d_src, 1) != 0) { return 1; } if (lsm6dso_mem_bank_set(&_reg_ctx, LSM6DSO_EMBEDDED_FUNC_BANK) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)&func_src, 1) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_INT1, (uint8_t *)&int1_ctrl, 1) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_INT2, (uint8_t *)&int2_ctrl, 1) != 0) { return 1; } if (lsm6dso_mem_bank_set(&_reg_ctx, LSM6DSO_USER_BANK) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1) != 0) { return 1; } if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1) != 0) { return 1; } if (lsm6dso_tilt_flag_data_ready_get(&_reg_ctx, &tilt_ia) != 0) { return 1; } if ((md1_cfg.int1_ff == 1U) || (md2_cfg.int2_ff == 1U)) { if (wake_up_src.ff_ia == 1U) { status->FreeFallStatus = 1; } } if ((md1_cfg.int1_wu == 1U) || (md2_cfg.int2_wu == 1U)) { if (wake_up_src.wu_ia == 1U) { status->WakeUpStatus = 1; } } if ((md1_cfg.int1_single_tap == 1U) || (md2_cfg.int2_single_tap == 1U)) { if (tap_src.single_tap == 1U) { status->TapStatus = 1; } } if ((md1_cfg.int1_double_tap == 1U) || (md2_cfg.int2_double_tap == 1U)) { if (tap_src.double_tap == 1U) { status->DoubleTapStatus = 1; } } if ((md1_cfg.int1_6d == 1U) || (md2_cfg.int2_6d == 1U)) { if (d6d_src.d6d_ia == 1U) { status->D6DOrientationStatus = 1; } } if (int1_ctrl.int1_step_detector == 1U) { if (func_src.step_detected == 1U) { status->StepStatus = 1; } } if ((int1_ctrl.int1_tilt == 1U) || (int2_ctrl.int2_tilt == 1U)) { if (tilt_ia == 1U) { status->TiltStatus = 1; } } return 0; } /** * @brief Set self test * @param val the value of st_xl in reg CTRL5_C * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_x_self_test(uint8_t val) { lsm6dso_st_xl_t reg; reg = (val == 0U) ? LSM6DSO_XL_ST_DISABLE : (val == 1U) ? LSM6DSO_XL_ST_POSITIVE : (val == 2U) ? LSM6DSO_XL_ST_NEGATIVE : LSM6DSO_XL_ST_DISABLE; if (lsm6dso_xl_self_test_set(&_reg_ctx, reg) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO GYRO data ready bit value * @param status the status of data ready bit * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_g_drdy_status(uint8_t *status) { if (lsm6dso_gy_flag_data_ready_get(&_reg_ctx, status) != 0) { return 1; } return 0; } /** * @brief Set self test * @param val the value of st_xl in reg CTRL5_C * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_g_self_test(uint8_t val) { lsm6dso_st_g_t reg; reg = (val == 0U) ? LSM6DSO_GY_ST_DISABLE : (val == 1U) ? LSM6DSO_GY_ST_POSITIVE : (val == 2U) ? LSM6DSO_GY_ST_NEGATIVE : LSM6DSO_GY_ST_DISABLE; if (lsm6dso_gy_self_test_set(&_reg_ctx, reg) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO FIFO number of samples * @param num_samples number of samples * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_num_samples(uint16_t *num_samples) { if (lsm6dso_fifo_data_level_get(&_reg_ctx, num_samples) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO FIFO full status * @param status FIFO full status * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_full_status(uint8_t *status) { lsm6dso_reg_t reg; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_FIFO_STATUS2, ®.byte, 1) != 0) { return 1; } *status = reg.fifo_status2.fifo_full_ia; return 0; } /** * @brief Set the LSM6DSO FIFO full interrupt on INT1 pin * @param status FIFO full interrupt on INT1 pin status * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_int1_fifo_full(uint8_t status) { lsm6dso_reg_t reg; if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_INT1_CTRL, ®.byte, 1) != 0) { return 1; } reg.int1_ctrl.int1_fifo_full = status; if (lsm6dso_write_reg(&_reg_ctx, LSM6DSO_INT1_CTRL, ®.byte, 1) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO FIFO watermark level * @param watermark FIFO watermark level * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_watermark_level(uint16_t watermark) { if (lsm6dso_fifo_watermark_set(&_reg_ctx, watermark) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO FIFO stop on watermark * @param status FIFO stop on watermark status * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_stop_on_fth(uint8_t status) { if (lsm6dso_fifo_stop_on_wtm_set(&_reg_ctx, status) != 0) { return 1; } return 0; } /** * @brief Set the LSM6DSO FIFO mode * @param mode FIFO mode * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_mode(uint8_t mode) { int ret = 0; /* Verify that the passed parameter contains one of the valid values. */ switch ((lsm6dso_fifo_mode_t)mode) { case LSM6DSO_BYPASS_MODE: case LSM6DSO_FIFO_MODE: case LSM6DSO_STREAM_TO_FIFO_MODE: case LSM6DSO_BYPASS_TO_STREAM_MODE: case LSM6DSO_STREAM_MODE: break; default: ret = 1; break; } if (ret == 1) { return ret; } if (lsm6dso_fifo_mode_set(&_reg_ctx, (lsm6dso_fifo_mode_t)mode) != 0) { return 1; } return ret; } /** * @brief Get the LSM6DSO FIFO tag * @param tag FIFO tag * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_tag(uint8_t *tag) { lsm6dso_fifo_tag_t tag_local; if (lsm6dso_fifo_sensor_tag_get(&_reg_ctx, &tag_local) != 0) { return 1; } *tag = (uint8_t)tag_local; return 0; } /** * @brief Get the LSM6DSO FIFO raw data * @param data FIFO raw data array [6] * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_data(uint8_t *data) { if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_FIFO_DATA_OUT_X_L, data, 6) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO FIFO accelero single sample (16-bit data per 3 axes) and calculate acceleration [mg] * @param acceleration FIFO accelero axes [mg] * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_x_axes(int32_t *acceleration) { uint8_t data[6]; int16_t data_raw[3]; float sensitivity = 0.0f; float acceleration_float[3]; if (get_fifo_data(data) != 0) { return 1; } data_raw[0] = ((int16_t)data[1] << 8) | data[0]; data_raw[1] = ((int16_t)data[3] << 8) | data[2]; data_raw[2] = ((int16_t)data[5] << 8) | data[4]; if (get_x_sensitivity(&sensitivity) != 0) { return 1; } acceleration_float[0] = (float)data_raw[0] * sensitivity; acceleration_float[1] = (float)data_raw[1] * sensitivity; acceleration_float[2] = (float)data_raw[2] * sensitivity; acceleration[0] = (int32_t)acceleration_float[0]; acceleration[1] = (int32_t)acceleration_float[1]; acceleration[2] = (int32_t)acceleration_float[2]; return 0; } /** * @brief Set the LSM6DSO FIFO accelero BDR value * @param bdr FIFO accelero BDR value * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_x_bdr(float bdr) { lsm6dso_bdr_xl_t new_bdr; new_bdr = (bdr <= 0.0f) ? LSM6DSO_XL_NOT_BATCHED : (bdr <= 12.5f) ? LSM6DSO_XL_BATCHED_AT_12Hz5 : (bdr <= 26.0f) ? LSM6DSO_XL_BATCHED_AT_26Hz : (bdr <= 52.0f) ? LSM6DSO_XL_BATCHED_AT_52Hz : (bdr <= 104.0f) ? LSM6DSO_XL_BATCHED_AT_104Hz : (bdr <= 208.0f) ? LSM6DSO_XL_BATCHED_AT_208Hz : (bdr <= 416.0f) ? LSM6DSO_XL_BATCHED_AT_417Hz : (bdr <= 833.0f) ? LSM6DSO_XL_BATCHED_AT_833Hz : (bdr <= 1660.0f) ? LSM6DSO_XL_BATCHED_AT_1667Hz : (bdr <= 3330.0f) ? LSM6DSO_XL_BATCHED_AT_3333Hz : LSM6DSO_XL_BATCHED_AT_6667Hz; if (lsm6dso_fifo_xl_batch_set(&_reg_ctx, new_bdr) != 0) { return 1; } return 0; } /** * @brief Get the LSM6DSO FIFO gyro single sample (16-bit data per 3 axes) and calculate angular velocity [mDPS] * @param angular_velocity FIFO gyro axes [mDPS] * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::get_fifo_g_axes(int32_t *angular_velocity) { uint8_t data[6]; int16_t data_raw[3]; float sensitivity = 0.0f; float angular_velocity_float[3]; if (get_fifo_data(data) != 0) { return 1; } data_raw[0] = ((int16_t)data[1] << 8) | data[0]; data_raw[1] = ((int16_t)data[3] << 8) | data[2]; data_raw[2] = ((int16_t)data[5] << 8) | data[4]; if (get_g_sensitivity(&sensitivity) != 0) { return 1; } angular_velocity_float[0] = (float)data_raw[0] * sensitivity; angular_velocity_float[1] = (float)data_raw[1] * sensitivity; angular_velocity_float[2] = (float)data_raw[2] * sensitivity; angular_velocity[0] = (int32_t)angular_velocity_float[0]; angular_velocity[1] = (int32_t)angular_velocity_float[1]; angular_velocity[2] = (int32_t)angular_velocity_float[2]; return 0; } /** * @brief Set the LSM6DSO FIFO gyro BDR value * @param bdr FIFO gyro BDR value * @retval 0 in case of success, an error code otherwise */ int LSM6DSOSensor::set_fifo_g_bdr(float bdr) { lsm6dso_bdr_gy_t new_bdr; new_bdr = (bdr <= 0.0f) ? LSM6DSO_GY_NOT_BATCHED : (bdr <= 12.5f) ? LSM6DSO_GY_BATCHED_AT_12Hz5 : (bdr <= 26.0f) ? LSM6DSO_GY_BATCHED_AT_26Hz : (bdr <= 52.0f) ? LSM6DSO_GY_BATCHED_AT_52Hz : (bdr <= 104.0f) ? LSM6DSO_GY_BATCHED_AT_104Hz : (bdr <= 208.0f) ? LSM6DSO_GY_BATCHED_AT_208Hz : (bdr <= 416.0f) ? LSM6DSO_GY_BATCHED_AT_417Hz : (bdr <= 833.0f) ? LSM6DSO_GY_BATCHED_AT_833Hz : (bdr <= 1660.0f) ? LSM6DSO_GY_BATCHED_AT_1667Hz : (bdr <= 3330.0f) ? LSM6DSO_GY_BATCHED_AT_3333Hz : LSM6DSO_GY_BATCHED_AT_6667Hz; if (lsm6dso_fifo_gy_batch_set(&_reg_ctx, new_bdr) != 0) { return 1; } return 0; } int32_t LSM6DSO_io_write(void *handle, uint8_t WriteAddr, uint8_t *pBuffer, uint16_t nBytesToWrite) { return ((LSM6DSOSensor *)handle)->io_write(pBuffer, WriteAddr, nBytesToWrite); } int32_t LSM6DSO_io_read(void *handle, uint8_t ReadAddr, uint8_t *pBuffer, uint16_t nBytesToRead) { return ((LSM6DSOSensor *)handle)->io_read(pBuffer, ReadAddr, nBytesToRead); }