2019-2020 LIS2DW12 Accelerometer Project
Dependencies: X_NUCLEO_IKS01A3
main.cpp
- Committer:
- martlefebvre94
- Date:
- 2019-09-17
- Revision:
- 13:f4ad8550374a
- Parent:
- 12:2c129618b350
- Child:
- 14:8b7ce0fc3971
File content as of revision 13:f4ad8550374a:
/** ****************************************************************************** * @file main.cpp * @author SRA * @version V1.0.0 * @date 5-March-2019 * @brief Simple Example application for using the X_NUCLEO_IKS01A3 * MEMS Inertial & Environmental Sensor Nucleo expansion board. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2019 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* LELEC2811 Multisensor IKS01A3 Project M. Lefebvre - 2019-2020 */ /* Includes */ #include <stdlib.h> #include <time.h> #include "mbed.h" #include "XNucleoIKS01A3.h" #include "stm32l073xx.h" #include "stm32l0xx_hal_flash.h" /* Defines */ #define FS 25.0 // Sampling frequency (Hz) // LIS2MDL Magnetometer #define LIS2MDL_ODR 50.0 // Output data rate (10, 20, 50 or 100 Hz) #define LIS2MDL_LP 0 // Power mode (0 for high-resolution mode, 1 for low-power mode) #define LIS2MDL_LPF 0 // Bandwidth (0 for ODR/2, 1 for ODR/4) #define LIS2MDL_COMP_TEMP_EN 1 // Temperature compensation (0 disabled, 1 enabled) #define LIS2MDL_OFF_CANC 1 // Offset cancellation (0 for no offset cancellation, 1 for offset cancellation, 2 for set pulse only at power-on) #define LIS2MDL_DATA_SIZE 12 // Number of bytes for LIS2MDL magnetometer data // LPS22HH Pressure sensor #define P0 1013.26 // Sea level pressure (hPa) #define LPS22HH_ODR 50.0 // Output data rate (one-shot, 1, 10, 25, 50, 75, 100, 200 Hz) #define LPS22HH_LOW_NOISE_EN 1 // Low-noise (0 disabled, 1 enabled) #define LPS22HH_LPF_CFG 3 // Device bandwidth (0 for ODR/2, 2 for ODR/9, 3 for ODR/20) #define LPS22HH_DATA_SIZE 8 // Number of bytes for LPS22HH pressure sensor data // LIS2DW12 Accelerometer #define LIS2DW12_ODR 4 // Output data rate (0 power down, 1 HP 12.5Hz/LP 1.6Hz, 2 for 12.5Hz, 3 for 25Hz, 4 for 50Hz, 5 for 100Hz, 6 for 200Hz, 7 for HP 400Hz/LP 200Hz, 8 for HP 800Hz/LP 200Hz, 9 for HP 1600Hz/LP 200Hz) #define LIS2DW12_FS 4 // Full-scale +-(2, 4, 8 or 16 g) #define LIS2DW12_BW_FILT 2 // Filter bandwidth (0 for ODR/2, 1 for ODR/4, 2 for ODR/10, 3 for ODR/20) #define LIS2DW12_LP_MODE 0 // Low-power modes 1 to 4 (1 gives the max. rms noise, 4 gives the min. rms noise) #define LIS2DW12_MODE 1 // Mode (0 for low-power, 1 for high-performance, 2 for single data conversion) #define LIS2DW12_LOW_NOISE 1 // Low-noise (0 disable, 1 enabled) #define LIS2DW12_POWER_MODE LIS2DW12_LP_MODE + (LIS2DW12_MODE << 2) + (LIS2DW12_LOW_NOISE << 4) // HTS221 Relative humidity and temperature sensor #define HTS221_ODR 1 // Output data rate (one-shot, 1Hz, 7Hz, 12.5Hz) #define HTS221_HEATER 0 // Heater configuration (0 disabled, 1 enabled) #define HTS221_AVGH 32 // Humidity averaging (4 to 512) #define HTS221_AVGT 16 // Temperature averaging (2 to 256) // LSM6DSO Accelerometer + gyroscope #define LSM6DSO_ODR_XL 12.5 // Accelerometer output data rate (12.5, 26, 52, 104, 208, 416, 833, 1.66k, 3.33k, 6.66kHz) #define LSM6DSO_FS_XL 4 // Accelerometer full scale (2, 4, 8, 16g) #define LSM6DSO_XL_HM_MODE 1 // Accelerometer high-performance mode (0 enabled, 1 disabled) #define LSM6DSO_XL_ULP_EN 0 // Accelerometer ultra-low-power configuration (0 disabled, 1 enabled) #define LSM6DSO_LPF2_XL_EN 1 // Accelerometer high-resolution selection (0 for 1st stage of digital filtering, 1 for 2nd stage) #define LSM6DSO_HP_SLOPE_XL_EN 0 // Accelerometer high-pass filter selection (0 for low-pass, 1 for high-pass) #define LSM6DSO_HPCF_XL 2 // Accelerometer filter configuration and cutoff setting (0 for ODR/4, 1 for ODR/10, 2 for ODR/20, 3 for ODR/45, 4 for ODR/100, 5 for ODR/200, 6 for ODR/400, 7 for ODR/800) #define LSM6DSO_ODR_G 16 // Gyroscope output data rate (12.5, 26, 52, 104, 208, 416, 833, 1.66k, 3.33k, 6.66kHz) #define LSM6DSO_FS_G 1000 // Gyroscope full scale (250, 500, 1000, 2000dps) #define LSM6DSO_G_HM_MODE 1 // Gyroscope high-performance mode (0 enabled, 1 disabled) #define LSM6DSO_LPF1_SEL_G 1 // Gyroscope digital LPF1 enable (0 disabled, 1 enabled) #define LSM6DSO_FTYPE 3 // Gyroscope LPF1 bandwidth selection (0 ultra light, 1 very light, 2 light, 3 medium, 4 strong, 5 very strong, 6 aggressive, 7 xtreme) #define LSM6DSO_HP_EN_G 1 // Gyroscope digital HPF enable (0 HPF disabled, 1 HPF enabled) #define LSM6DSO_HPM_G 2 // Gyroscope HPF cutoff selection (0 for 16mHz, 1 for 65mHz, 10 for 260 mHz, 11 for 1.04Hz) /* Functions definition */ bool acquisition_task(bool verbose); void read_task(); void print_flash_info(); bool erase_flash(bool verbose); bool write_flash(uint32_t Flash_addr, uint32_t* Flash_wdata, int32_t n_words, bool verbose); void read_flash(uint32_t Flash_addr, uint32_t* Flash_rdata, uint32_t n_bytes); void button1_enabled_cb(void); void button1_onpressed_cb(void); static char *print_double(char *str, double v); float pressure_to_altitude(double pressure); uint32_t FloatToUint(float n); float UintToFloat(uint32_t n); /* Serial link */ Serial pc(SERIAL_TX, SERIAL_RX); /* Button */ InterruptIn button1(USER_BUTTON); volatile bool button1_pressed = false; // Used in the main loop volatile bool button1_enabled = true; // Used for debouncing Timeout button1_timeout; // Used for debouncing /* Instantiate the expansion board */ static XNucleoIKS01A3 *mems_expansion_board = XNucleoIKS01A3::instance(D14, D15, D4, D5, A3, D6, A4); /* Retrieve the composing elements of the expansion board */ static LIS2MDLSensor *magnetometer = mems_expansion_board->magnetometer; static HTS221Sensor *hum_temp = mems_expansion_board->ht_sensor; static LPS22HHSensor *press_temp = mems_expansion_board->pt_sensor; static LSM6DSOSensor *acc_gyro = mems_expansion_board->acc_gyro; static LIS2DW12Sensor *accelerometer = mems_expansion_board->accelerometer; static STTS751Sensor *temp = mems_expansion_board->t_sensor; /* Main */ int main() { uint8_t id; float read_reg, read_reg_1; uint8_t read_reg_int, read_reg_int_1, read_reg_int_2; bool save_data = false; uint32_t Flash_addr = FLASH_BANK2_BASE; /* Serial link configuration */ pc.baud(115200); /* Button configuration */ button1.fall(callback(button1_onpressed_cb)); // Attach ISR to handle button press event /* Reset message */ printf("\n\r**************************************************\n\r"); printf("LELEC2811 IKS01A3 Multisensor Program\n\r"); printf("**************************************************\n\r"); /* LIS2MDL magnetometer sensor configuration */ magnetometer->enable(); printf("/***** LIS2MDL magnetometer configuration *****/\r\n"); magnetometer->read_id(&id); printf("LIS2MDL magnetometer = 0x%X\r\n", id); magnetometer->set_m_odr(LIS2MDL_ODR); magnetometer->get_m_odr(&read_reg); printf("LIS2MDL ODR = %1.1f [Hz]\r\n", read_reg); magnetometer->set_m_lp(LIS2MDL_LP); magnetometer->get_m_lp(&read_reg_int); printf("LIS2MDL LP = %1d\r\n", read_reg_int); magnetometer->set_m_lpf(LIS2MDL_LPF); magnetometer->get_m_lpf(&read_reg_int); printf("LIS2MDL LPF = %1d\r\n", read_reg_int); magnetometer->set_m_comp_temp_en(LIS2MDL_COMP_TEMP_EN); magnetometer->get_m_comp_temp_en(&read_reg_int); printf("LIS2MDL COMP_TEMP_EN = %1d\r\n", read_reg_int); magnetometer->set_m_off_canc(LIS2MDL_OFF_CANC); magnetometer->get_m_off_canc(&read_reg_int); printf("LIS2MDL OFF_CANC = %1d\r\n", read_reg_int); /* LPS22HH pressure sensor configuration */ press_temp->enable(); printf("/***** LPS22HH pressure sensor configuration *****/\r\n"); press_temp->read_id(&id); printf("LPS22HH pressure = 0x%X\r\n", id); press_temp->set_odr(LPS22HH_ODR, LPS22HH_LOW_NOISE_EN); press_temp->get_odr(&read_reg, &read_reg_int); printf("LPS22HH ODR = %1.1f [Hz]\r\n", read_reg); printf("LPS22HH LOW_NOISE_EN = %1d\r\n", read_reg_int); press_temp->set_lpfp_cfg(LPS22HH_LPF_CFG); press_temp->get_lpfp_cfg(&read_reg_int); printf("LPS22HH LPF_CFG = %1d\r\n", read_reg_int); /* LIS2DW12 accelerometer sensor configuration */ accelerometer->enable_x(); printf("/***** LIS2DW12 accelerometer sensor configuration *****/\r\n"); accelerometer->read_id(&id); printf("LIS2DW12 accelerometer = 0x%X\r\n", id); accelerometer->set_x_odr(LIS2DW12_ODR); accelerometer->get_x_odr(&read_reg); printf("LIS2DW12 ODR = %1.3f [Hz]\r\n", read_reg); accelerometer->set_x_fs(LIS2DW12_FS); accelerometer->get_x_fs(&read_reg); printf("LIS2DW12 FS = %1.3f [g]\r\n", read_reg); accelerometer->set_x_bw_filt(LIS2DW12_BW_FILT); accelerometer->get_x_bw_filt(&read_reg_int); printf("LIS2DW12 BW_FILT = %1d\r\n", read_reg_int); accelerometer->set_x_power_mode(LIS2DW12_POWER_MODE); accelerometer->get_x_power_mode(&read_reg_int, &read_reg_int_1, &read_reg_int_2); printf("LIS2DW12 LP_MODE = %1d\r\n", read_reg_int); printf("LIS2DW12 MODE = %1d\r\n", read_reg_int_1); printf("LIS2DW12 LOW_NOISE = %1d\r\n", read_reg_int_2); /* HTS221 relative humidity and temperature sensor configuration */ hum_temp->enable(); printf("/***** HTS221 humidity sensor configuration *****/\r\n"); hum_temp->read_id(&id); printf("HTS221 humidity & temperature = 0x%X\r\n", id); hum_temp->set_odr(HTS221_ODR); hum_temp->get_odr(&read_reg); printf("HTS221 ODR = %1.3f [Hz]\r\n", read_reg); hum_temp->set_heater(HTS221_HEATER); hum_temp->get_heater(&read_reg_int); printf("HTS221 HEATER = %1d\r\n", read_reg_int); hum_temp->set_avg(HTS221_AVGH, HTS221_AVGT); hum_temp->get_avg(&read_reg, &read_reg_1); printf("HTS221 AVGH = %1.0f\r\n", read_reg); printf("HTS221 AVGT = %1.0f\r\n", read_reg_1); /* STTS751 Temperature sensor configuration */ temp->enable(); printf("/***** STTS751 temperature sensor configuration *****/\r\n"); temp->read_id(&id); printf("STTS751 temperature = 0x%X\r\n", id); /* LSM6DSO Accelerometer and gyroscope configuration */ acc_gyro->enable_x(); acc_gyro->enable_g(); printf("/***** LSM6DSO accelerometer and gyroscope sensor configuration *****/\r\n"); acc_gyro->read_id(&id); printf("LSM6DSO accelerometer & gyroscope = 0x%X\r\n", id); acc_gyro->set_x_odr(LSM6DSO_ODR_XL); acc_gyro->get_x_odr(&read_reg); printf("LSM6DSO ODR_XL = %1.3f [Hz]\r\n", read_reg); acc_gyro->set_x_fs(LSM6DSO_FS_XL); acc_gyro->get_x_fs(&read_reg); printf("LSM6DSO FS_XL = %1.3f [g]\r\n", read_reg); acc_gyro->set_x_power_mode(LSM6DSO_XL_HM_MODE, LSM6DSO_XL_ULP_EN); acc_gyro->get_x_power_mode(&read_reg_int, &read_reg_int_1); printf("LSM6DSO XL_HM_MODE = %1d\r\n", read_reg_int); printf("LSM6DSO XL_ULP_EN = %1d\r\n", read_reg_int_1); acc_gyro->set_x_lpf2_en(LSM6DSO_LPF2_XL_EN); acc_gyro->get_x_lpf2_en(&read_reg_int); printf("LSM6DSO LPF2_XL_EN = %1d\r\n", read_reg_int); acc_gyro->set_x_filter_config(LSM6DSO_HP_SLOPE_XL_EN, LSM6DSO_HPCF_XL); acc_gyro->get_x_filter_config(&read_reg_int, &read_reg_int_1); printf("LSM6DSO HP_SLOPE_XL_EN = %1d\r\n", read_reg_int); printf("LSM6DSO HPCF_XL = %1d\r\n", read_reg_int_1); acc_gyro->set_g_odr(LSM6DSO_ODR_G); acc_gyro->get_g_odr(&read_reg); printf("LSM6DSO ODR_G = %1.3f [Hz]\r\n", read_reg); acc_gyro->set_g_fs(LSM6DSO_FS_XL); acc_gyro->get_g_fs(&read_reg); printf("LSM6DSO FS_G = %1.3f [dps]\r\n", read_reg); acc_gyro->set_g_power_mode(LSM6DSO_G_HM_MODE); acc_gyro->get_g_power_mode(&read_reg_int); printf("LSM6DSO G_HM_MODE = %1d\r\n", read_reg_int); acc_gyro->set_g_lpf_config(LSM6DSO_LPF1_SEL_G, LSM6DSO_FTYPE); acc_gyro->get_g_lpf_config(&read_reg_int, &read_reg_int_1); printf("LSM6DSO LPF1_SEL_G = %1d\r\n", read_reg_int); printf("LSM6DSO FTYPE = %1d\r\n", read_reg_int_1); acc_gyro->set_g_hpf_config(LSM6DSO_HP_EN_G, LSM6DSO_HPM_G); acc_gyro->get_g_hpf_config(&read_reg_int, &read_reg_int_1); printf("LSM6DSO HP_EN_G = %1d\r\n", read_reg_int); printf("LSM6DSO HPM_G = %1d\r\n", read_reg_int_1); /* Print Flash memory information */ print_flash_info(); /* Information for the user */ printf("Press blue button to start data acquisition\r\n"); printf("Press 'R' to read previously measured data\r\n"); /* Acquisition loop */ while(1) { // Start saving data when button is pushed if (button1_pressed) { button1_pressed = false; save_data = true; erase_flash(false); printf("Acquiring data...\r\n"); printf("Press blue button to stop data acquisition\r\n"); Flash_addr = FLASH_BANK2_BASE; } if (save_data) { // Acquisition task save_data = acquisition_task(true); } else { // Read task read_task(); } } } /* Acquisition task */ bool acquisition_task(bool verbose) { int32_t m_axes[3]; int32_t acc_axes[3]; int32_t acc_axes_1[3]; int32_t gyro_axes[3]; float pressure_value, hum_value, temp_value, temp_value_1; char buffer[32]; uint32_t buffer_size = FLASH_PAGE_SIZE/4; uint32_t data_ind = 0; uint32_t data_buffer[buffer_size]; uint32_t Flash_addr = FLASH_BANK2_BASE; while (Flash_addr <= FLASH_BANK2_END-FLASH_PAGE_SIZE+1) { // Read sensors data magnetometer->get_m_axes(m_axes); press_temp->get_pressure(&pressure_value); accelerometer->get_x_axes(acc_axes); hum_temp->get_temperature(&temp_value); hum_temp->get_humidity(&hum_value); temp->get_temperature(&temp_value_1); acc_gyro->get_x_axes(acc_axes_1); acc_gyro->get_g_axes(gyro_axes); // Save data to Flash memory for (int i=0; i<3; i++) { // Write page in Flash memory if (data_ind >= buffer_size) { write_flash(Flash_addr, &data_buffer[0], buffer_size, false); Flash_addr += FLASH_PAGE_SIZE; data_ind = 0; } // Write data to buffer data_buffer[data_ind] = (uint32_t) m_axes[i]; data_ind++; } // Print data in terminal if (verbose) { printf("LIS2MDL: [mag/mgauss] %6d, %6d, %6d\r\n", ((uint32_t) m_axes[0]), ((uint32_t) m_axes[1]), ((uint32_t) m_axes[2])); printf("LPS22HH: [press/mbar] %1.3f, [alt/m] %1.3f\r\n", pressure_value, pressure_to_altitude(pressure_value)); printf("HTS221: [temp/deg C] %1.3f, [hum/%%] %1.3f\r\n", temp_value, hum_value); printf("STTS751 [temp/deg C] %1.3f\r\n", temp_value_1); printf("LIS2DW12: [acc/mg] %6d, %6d, %6d\r\n", ((uint32_t) acc_axes[0]), ((uint32_t) acc_axes[1]), ((uint32_t) acc_axes[2])); printf("LSM6DSO: [acc/mg] %6d, %6d, %6d\r\n", ((uint32_t) acc_axes_1[0]), ((uint32_t) acc_axes_1[1]), ((uint32_t) acc_axes_1[2])); printf("LSM6DSO: [gyro/mdps] %6d, %6d, %6d\r\n", ((uint32_t) gyro_axes[0]), ((uint32_t) gyro_axes[1]), ((uint32_t) gyro_axes[2])); } // Wait for acquisition period wait(1/FS); // Stop saving data when button is pushed if (button1_pressed) { button1_pressed = false; // Save remaining data to Flash memory write_flash(Flash_addr, &data_buffer[0], data_ind, false); printf("Data acquisition stopped\r\n"); printf("Press 'R' to read the data\r\n"); return false; } } printf("Data acquisition stopped\r\n"); printf("Press 'R' to read the data\r\n"); return false; } /* Read task */ void read_task() { char pc_input; uint32_t Flash_rdata[3]; bool flash_empty = false; // Read terminal input if (pc.readable()) { pc_input = pc.getc(); } else { pc_input = ' '; } // Read Flash memory if 'R' is pressed if ((pc_input == 'r') || (pc_input == 'R')) { // Data labels printf("mag_X\tmag_Y\tmag_Z\r\n"); // Read 1st Flash data uint32_t Flash_addr_temp = FLASH_BANK2_BASE; read_flash(Flash_addr_temp, &Flash_rdata[0], LIS2MDL_DATA_SIZE); // Read Flash data while ((Flash_addr_temp <= FLASH_BANK2_END-LIS2MDL_DATA_SIZE+1) && !flash_empty) { // Print read data in the terminal printf("%6d\t%6d\t%6d\r\n", Flash_rdata[0], Flash_rdata[1], Flash_rdata[2]); Flash_addr_temp += LIS2MDL_DATA_SIZE; // Check if the next address is not empty (erased Flash only contains 0) if (Flash_addr_temp <= FLASH_BANK2_END-LIS2MDL_DATA_SIZE+1) { read_flash(Flash_addr_temp, &Flash_rdata[0], LIS2MDL_DATA_SIZE); if ((Flash_rdata[0] == 0) && (Flash_rdata[1] == 0) && (Flash_rdata[2] == 0)) { flash_empty = true; } } } } } /* Print Flash memory info */ void print_flash_info() { printf("**************************************************\n\r"); printf("/***** Flash memory info *****/\r\n"); printf("Flash size: %d [B]\r\n", FLASH_SIZE); printf("Flash page size: %d [B]\r\n", FLASH_PAGE_SIZE); printf("Flash nb of pages: %d \r\n", FLASH_SIZE/FLASH_PAGE_SIZE); printf("Flash bank 1 base address: 0x%X\r\n", FLASH_BASE); printf("Flash bank 1 end address: 0x%X\r\n", FLASH_BANK1_END); printf("Flash bank 2 base address: 0x%X\r\n", FLASH_BANK2_BASE); printf("Flash bank 2 end address: 0x%X\r\n", FLASH_BANK2_END); printf("**************************************************\n\r"); } /* Erase content of Flash memory */ bool erase_flash(bool verbose) { printf("Erasing Flash memory...\r\n"); // Unlock Flash memory HAL_FLASH_Unlock(); // Erase Flash memory FLASH_EraseInitTypeDef eraser; uint32_t Flash_addr = FLASH_BANK2_BASE; uint32_t page_error = 0; int32_t page = 1; while (Flash_addr < FLASH_BANK2_END) { eraser.TypeErase = FLASH_TYPEERASE_PAGES; eraser.PageAddress = Flash_addr; eraser.NbPages = 1; if(HAL_OK != HAL_FLASHEx_Erase(&eraser, &page_error)) { if (verbose) {printf("Flash erase failed!\r\n");} printf("Error 0x%X\r\n", page_error); HAL_FLASH_Lock(); return false; } if (verbose) {printf("Erased page %d at address: 0x%X\r\n", page, Flash_addr);} Flash_addr += FLASH_PAGE_SIZE; page++; } if (verbose) {printf("Flash erase succesful!\r\n");} return true; } /* Write Flash memory */ bool write_flash(uint32_t Flash_addr, uint32_t* Flash_wdata, int32_t n_words, bool verbose) { clock_t time; if (verbose) {time = clock();} // Unlock Flash memory HAL_FLASH_Unlock(); // Write Flash memory for (int i=0; i<n_words; i++) { if (HAL_OK != HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, Flash_addr, Flash_wdata[i])) { if (verbose) {printf("Flash write failed!\r\n");} HAL_FLASH_Lock(); return false; } Flash_addr += 4; } if (verbose) {printf("Flash write succesful!\r\n");} HAL_FLASH_Lock(); if (verbose) { time = clock() - time; printf("Time to write: %1.6f [s]\r\n", (((double) time)/CLOCKS_PER_SEC)); } return true; } /* Read Flash memory */ void read_flash(uint32_t Flash_addr, uint32_t* Flash_rdata, uint32_t n_bytes) { memcpy(Flash_rdata, (uint32_t*) Flash_addr, n_bytes); } /* Enables button when bouncing is over */ void button1_enabled_cb(void) { button1_enabled = true; } /* ISR handling button pressed event */ void button1_onpressed_cb(void) { if (button1_enabled) { // Disabled while the button is bouncing button1_enabled = false; button1_pressed = true; // To be read by the main loop button1_timeout.attach(callback(button1_enabled_cb), 0.3); // Debounce time 300 ms } } /* Helper function for printing floats & doubles */ static char *print_double(char *str, double v) { int decimalDigits = 6; int i = 1; int intPart, fractPart; int len; char *ptr; /* prepare decimal digits multiplicator */ for (; decimalDigits != 0; i *= 10, decimalDigits--); /* calculate integer & fractinal parts */ intPart = (int)v; fractPart = (int)((v - (double)(int)v) * i); /* fill in integer part */ sprintf(str, "%i.", intPart); /* prepare fill in of fractional part */ len = strlen(str); ptr = &str[len]; /* fill in leading fractional zeros */ for (i /= 10; i > 1; i /= 10, ptr++) { if (fractPart >= i) { break; } *ptr = '0'; } /* fill in (rest of) fractional part */ sprintf(ptr, "%i", fractPart); return str; } /* Pressure to altitude conversion */ float pressure_to_altitude(double pressure) { return 44330.77 * (1-pow(pressure/P0, 0.1902632)); } uint32_t FloatToUint(float n) { return (uint32_t)(*(uint32_t*)&n); } float UintToFloat(uint32_t n) { return (float)(*(float*)&n); }