Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: LTC681x.cpp
- Revision:
- 0:f06ed53310a3
- Child:
- 1:4dd3e328a30b
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/LTC681x.cpp Wed Feb 07 08:26:04 2018 +0000
@@ -0,0 +1,1469 @@
+/*
+ General BMS Library
+ LTC681x.cpp
+*/
+
+#include "mbed.h"
+
+#include "LTC681x.h"
+#include "bms.h"
+//#include "LT_SPI.h"
+
+
+void wakeup_idle(uint8_t total_ic)
+{
+ for (int i =0; i<total_ic; i++) {
+ //spi2_CS = 0;
+// wait_ms(2); //Guarantees the isoSPI will be in ready mode
+ spi_read_byte(0xff);
+ //spi2_CS = 1;
+ }
+}
+
+//Generic wakeup commannd to wake the LTC6813 from sleep
+void wakeup_sleep(uint8_t total_ic)
+{
+ for (int i =0; i<total_ic; i++) {
+ //spi2_CS = 0;
+ delay_u(300); // Guarantees the LTC6813 will be in standby
+ //spi2_CS = 1;
+ delay_u(10);
+ }
+}
+
+//Generic function to write 68xx commands. Function calculated PEC for tx_cmd data
+void cmd_68(uint8_t tx_cmd[2])
+{
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+// uint8_t md_bits;
+
+ cmd[0] = tx_cmd[0];
+ cmd[1] = tx_cmd[1];
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+ //spi2_CS = 0;
+ spi_write_array(4,cmd);
+ //spi2_CS = 1;
+}
+
+//Generic function to write 68xx commands and write payload data. Function calculated PEC for tx_cmd data
+void write_68(uint8_t total_ic , uint8_t tx_cmd[2], uint8_t data[])
+{
+ const uint8_t BYTES_IN_REG = 6;
+ const uint8_t CMD_LEN = 4+(8*total_ic);
+ uint8_t *cmd;
+ uint16_t data_pec;
+ uint16_t cmd_pec;
+ uint8_t cmd_index;
+
+ cmd = (uint8_t *)malloc(CMD_LEN*sizeof(uint8_t));
+ cmd[0] = tx_cmd[0];
+ cmd[1] = tx_cmd[1];
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+ cmd_index = 4;
+ for (uint8_t current_ic = total_ic; current_ic > 0; current_ic--) { // executes for each LTC681x in daisy chain, this loops starts with
+ // the last IC on the stack. The first configuration written is
+ // received by the last IC in the daisy chain
+
+ for (uint8_t current_byte = 0; current_byte < BYTES_IN_REG; current_byte++) {
+ cmd[cmd_index] = data[((current_ic-1)*6)+current_byte];
+ cmd_index = cmd_index + 1;
+ }
+
+ data_pec = (uint16_t)pec15_calc(BYTES_IN_REG, &data[(current_ic-1)*6]); // calculating the PEC for each Iss configuration register data
+ cmd[cmd_index] = (uint8_t)(data_pec >> 8);
+ cmd[cmd_index + 1] = (uint8_t)data_pec;
+ cmd_index = cmd_index + 2;
+ }
+
+
+ //spi2_CS = 0;
+ spi_write_array(CMD_LEN, cmd);
+ //spi2_CS = 1;
+ free(cmd);
+}
+
+//Generic function to write 68xx commands and read data. Function calculated PEC for tx_cmd data
+int8_t read_68( uint8_t total_ic, uint8_t tx_cmd[2], uint8_t *rx_data)
+{
+ const uint8_t BYTES_IN_REG = 8;
+ uint8_t cmd[4];
+ uint8_t data[256];
+ int8_t pec_error = 0;
+ uint16_t cmd_pec;
+ uint16_t data_pec;
+ uint16_t received_pec;
+
+ // data = (uint8_t *) malloc((8*total_ic)*sizeof(uint8_t)); // This is a problem because it can fail
+
+ cmd[0] = tx_cmd[0];
+ cmd[1] = tx_cmd[1];
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+
+ //spi2_CS = 0;
+ spi_write_read(cmd, 4, data, (BYTES_IN_REG*total_ic)); //Read the configuration data of all ICs on the daisy chain into
+ //spi2_CS = 1; //rx_data[] array
+
+ for (uint8_t current_ic = 0; current_ic < total_ic; current_ic++) { //executes for each LTC681x in the daisy chain and packs the data
+ //into the r_comm array as well as check the received Config data
+ //for any bit errors
+ for (uint8_t current_byte = 0; current_byte < BYTES_IN_REG; current_byte++) {
+ rx_data[(current_ic*8)+current_byte] = data[current_byte + (current_ic*BYTES_IN_REG)];
+ }
+ received_pec = (rx_data[(current_ic*8)+6]<<8) + rx_data[(current_ic*8)+7];
+ data_pec = pec15_calc(6, &rx_data[current_ic*8]);
+ if (received_pec != data_pec) {
+ pec_error = -1;
+ }
+ }
+
+
+ return(pec_error);
+}
+
+
+/*
+ Calculates and returns the CRC15
+ */
+uint16_t pec15_calc(uint8_t len, //Number of bytes that will be used to calculate a PEC
+ uint8_t *data //Array of data that will be used to calculate a PEC
+ )
+{
+ uint16_t remainder,addr;
+
+ remainder = 16;//initialize the PEC
+ for (uint8_t i = 0; i<len; i++) { // loops for each byte in data array
+ addr = ((remainder>>7)^data[i])&0xff;//calculate PEC table address
+//#ifdef MBED
+ remainder = (remainder<<8)^crc15Table[addr];
+//#else
+// remainder = (remainder<<8)^pgm_read_word_near(crc15Table+addr);
+//#endif
+ }
+ return(remainder*2);//The CRC15 has a 0 in the LSB so the remainder must be multiplied by 2
+}
+
+//Starts cell voltage conversion
+void LTC681x_adcv(
+ uint8_t MD, //ADC Mode
+ uint8_t DCP, //Discharge Permit
+ uint8_t CH //Cell Channels to be measured
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x02;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + 0x60 + (DCP<<4) + CH;
+ cmd_68(cmd);
+}
+
+
+//Starts cell voltage and SOC conversion
+void LTC681x_adcvsc(
+ uint8_t MD, //ADC Mode
+ uint8_t DCP //Discharge Permit
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits | 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits | 0x60 | (DCP<<4) | 0x07;
+ cmd_68(cmd);
+
+}
+
+// Starts cell voltage and GPIO 1&2 conversion
+void LTC681x_adcvax(
+ uint8_t MD, //ADC Mode
+ uint8_t DCP //Discharge Permit
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits | 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits | ((DCP&0x01)<<4) + 0x6F;
+ cmd_68(cmd);
+}
+
+//Starts cell voltage overlap conversion
+void LTC681x_adol(
+ uint8_t MD, //ADC Mode
+ uint8_t DCP //Discharge Permit
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x02;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + (DCP<<4) +0x01;
+ cmd_68(cmd);
+}
+
+//Starts cell voltage self test conversion
+void LTC681x_cvst(
+ uint8_t MD, //ADC Mode
+ uint8_t ST //Self Test
+)
+{
+ uint8_t cmd[2];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x02;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + ((ST)<<5) +0x07;
+ cmd_68(cmd);
+
+}
+
+//Start an Auxiliary Register Self Test Conversion
+void LTC681x_axst(
+ uint8_t MD, //ADC Mode
+ uint8_t ST //Self Test
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + ((ST&0x03)<<5) +0x07;
+ cmd_68(cmd);
+
+}
+
+//Start a Status Register Self Test Conversion
+void LTC681x_statst(
+ uint8_t MD, //ADC Mode
+ uint8_t ST //Self Test
+)
+{
+ uint8_t cmd[2];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + ((ST&0x03)<<5) +0x0F;
+ cmd_68(cmd);
+
+}
+
+//Sends the poll adc command
+uint8_t LTC681x_pladc()
+{
+ uint8_t cmd[4];
+ uint8_t adc_state = 0xFF;
+ uint16_t cmd_pec;
+
+ cmd[0] = 0x07;
+ cmd[1] = 0x14;
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+
+ //spi2_CS = 0;
+ spi_write_array(4,cmd);
+// adc_state = spi_read_byte(0xFF);
+ //spi2_CS = 1;
+ return(adc_state);
+}
+
+//This function will block operation until the ADC has finished it's conversion
+uint32_t LTC681x_pollAdc()
+{
+ uint32_t counter = 0;
+ uint8_t finished = 0;
+ uint8_t current_time = 0;
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+
+
+ cmd[0] = 0x07;
+ cmd[1] = 0x14;
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+ //spi2_CS = 0;
+ spi_write_array(4,cmd);
+
+ while ((counter<200000)&&(finished == 0)) {
+ current_time = spi_read_byte(0xff);
+ if (current_time>0) {
+ finished = 1;
+ } else {
+ counter = counter + 10;
+ }
+ }
+ //spi2_CS = 1;
+
+
+ return(counter);
+}
+
+//Start a GPIO and Vref2 Conversion
+void LTC681x_adax(
+ uint8_t MD, //ADC Mode
+ uint8_t CHG //GPIO Channels to be measured)
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + 0x60 + CHG ;
+ cmd_68(cmd);
+
+}
+
+//Start an GPIO Redundancy test
+void LTC681x_adaxd(
+ uint8_t MD, //ADC Mode
+ uint8_t CHG //GPIO Channels to be measured)
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + CHG ;
+ cmd_68(cmd);
+}
+
+//Start a Status ADC Conversion
+void LTC681x_adstat(
+ uint8_t MD, //ADC Mode
+ uint8_t CHST //GPIO Channels to be measured
+)
+{
+ uint8_t cmd[4];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + 0x68 + CHST ;
+ cmd_68(cmd);
+}
+
+// Start a Status register redundancy test Conversion
+void LTC681x_adstatd(
+ uint8_t MD, //ADC Mode
+ uint8_t CHST //GPIO Channels to be measured
+)
+{
+ uint8_t cmd[2];
+ uint8_t md_bits;
+
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x04;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + 0x08 + CHST ;
+ cmd_68(cmd);
+
+}
+
+
+// Start an open wire Conversion
+void LTC681x_adow(
+ uint8_t MD, //ADC Mode
+ uint8_t PUP //Discharge Permit
+)
+{
+ uint8_t cmd[2];
+ uint8_t md_bits;
+ md_bits = (MD & 0x02) >> 1;
+ cmd[0] = md_bits + 0x02;
+ md_bits = (MD & 0x01) << 7;
+ cmd[1] = md_bits + 0x28 + (PUP<<6) ;//+ CH;
+ cmd_68(cmd);
+}
+
+// Reads the raw cell voltage register data
+void LTC681x_rdcv_reg(uint8_t reg, //Determines which cell voltage register is read back
+ uint8_t total_ic, //the number of ICs in the
+ uint8_t *data //An array of the unparsed cell codes
+ )
+{
+ const uint8_t REG_LEN = 8; //number of bytes in each ICs register + 2 bytes for the PEC
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+
+ if (reg == 1) { //1: RDCVA
+ cmd[1] = 0x04;
+ cmd[0] = 0x00;
+ } else if (reg == 2) { //2: RDCVB
+ cmd[1] = 0x06;
+ cmd[0] = 0x00;
+ } else if (reg == 3) { //3: RDCVC
+ cmd[1] = 0x08;
+ cmd[0] = 0x00;
+ } else if (reg == 4) { //4: RDCVD
+ cmd[1] = 0x0A;
+ cmd[0] = 0x00;
+ } else if (reg == 5) { //4: RDCVE
+ cmd[1] = 0x09;
+ cmd[0] = 0x00;
+ } else if (reg == 6) { //4: RDCVF
+ cmd[1] = 0x0B;
+ cmd[0] = 0x00;
+ }
+
+
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+ //spi2_CS = 0;
+ spi_write_read(cmd,4,data,(REG_LEN*total_ic));
+ //spi2_CS = 1;
+
+}
+
+//helper function that parses voltage measurement registers
+int8_t parse_cells(uint8_t current_ic, uint8_t cell_reg, uint8_t cell_data[], uint16_t *cell_codes, uint8_t *ic_pec)
+{
+
+ const uint8_t BYT_IN_REG = 6;
+ const uint8_t CELL_IN_REG = 3;
+ int8_t pec_error = 0;
+ uint16_t parsed_cell;
+ uint16_t received_pec;
+ uint16_t data_pec;
+ uint8_t data_counter = current_ic*NUM_RX_BYT; //data counter
+
+
+ for (uint8_t current_cell = 0; current_cell<CELL_IN_REG; current_cell++) { // This loop parses the read back data into cell voltages, it
+ // loops once for each of the 3 cell voltage codes in the register
+
+ parsed_cell = cell_data[data_counter] + (cell_data[data_counter + 1] << 8);//Each cell code is received as two bytes and is combined to
+ // create the parsed cell voltage code
+ cell_codes[current_cell + ((cell_reg - 1) * CELL_IN_REG)] = parsed_cell;
+ data_counter = data_counter + 2; //Because cell voltage codes are two bytes the data counter
+ //must increment by two for each parsed cell code
+ }
+
+ received_pec = (cell_data[data_counter] << 8) | cell_data[data_counter+1]; //The received PEC for the current_ic is transmitted as the 7th and 8th
+ //after the 6 cell voltage data bytes
+ data_pec = pec15_calc(BYT_IN_REG, &cell_data[(current_ic) * NUM_RX_BYT]);
+
+ if (received_pec != data_pec) {
+ pec_error = 1; //The pec_error variable is simply set negative if any PEC errors
+ ic_pec[cell_reg-1]=1;
+ } else {
+ ic_pec[cell_reg-1]=0;
+ }
+ data_counter=data_counter+2;
+ return(pec_error);
+}
+
+/*
+The function reads a single GPIO voltage register and stores thre read data
+in the *data point as a byte array. This function is rarely used outside of
+the LTC6811_rdaux() command.
+*/
+void LTC681x_rdaux_reg(uint8_t reg, //Determines which GPIO voltage register is read back
+ uint8_t total_ic, //The number of ICs in the system
+ uint8_t *data //Array of the unparsed auxiliary codes
+ )
+{
+ const uint8_t REG_LEN = 8; // number of bytes in the register + 2 bytes for the PEC
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+
+
+ if (reg == 1) { //Read back auxiliary group A
+ cmd[1] = 0x0C;
+ cmd[0] = 0x00;
+ } else if (reg == 2) { //Read back auxiliary group B
+ cmd[1] = 0x0e;
+ cmd[0] = 0x00;
+ } else if (reg == 3) { //Read back auxiliary group C
+ cmd[1] = 0x0D;
+ cmd[0] = 0x00;
+ } else if (reg == 4) { //Read back auxiliary group D
+ cmd[1] = 0x0F;
+ cmd[0] = 0x00;
+ } else { //Read back auxiliary group A
+ cmd[1] = 0x0C;
+ cmd[0] = 0x00;
+ }
+
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+ //spi2_CS = 0;
+ spi_write_read(cmd,4,data,(REG_LEN*total_ic));
+ //spi2_CS = 1;
+
+}
+
+/*
+The function reads a single stat register and stores the read data
+in the *data point as a byte array. This function is rarely used outside of
+the LTC6811_rdstat() command.
+*/
+void LTC681x_rdstat_reg(uint8_t reg, //Determines which stat register is read back
+ uint8_t total_ic, //The number of ICs in the system
+ uint8_t *data //Array of the unparsed stat codes
+ )
+{
+ const uint8_t REG_LEN = 8; // number of bytes in the register + 2 bytes for the PEC
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+
+
+ if (reg == 1) { //Read back statiliary group A
+ cmd[1] = 0x10;
+ cmd[0] = 0x00;
+ } else if (reg == 2) { //Read back statiliary group B
+ cmd[1] = 0x12;
+ cmd[0] = 0x00;
+ }
+
+ else { //Read back statiliary group A
+ cmd[1] = 0x10;
+ cmd[0] = 0x00;
+ }
+
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+ //spi2_CS = 0;
+ spi_write_read(cmd,4,data,(REG_LEN*total_ic));
+ //spi2_CS = 1;
+
+}
+
+/*
+The command clears the cell voltage registers and intiallizes
+all values to 1. The register will read back hexadecimal 0xFF
+after the command is sent.
+*/
+void LTC681x_clrcell()
+{
+ uint8_t cmd[2]= {0x07 , 0x11};
+ cmd_68(cmd);
+}
+
+
+/*
+The command clears the Auxiliary registers and initializes
+all values to 1. The register will read back hexadecimal 0xFF
+after the command is sent.
+*/
+void LTC681x_clraux()
+{
+ uint8_t cmd[2]= {0x07 , 0x12};
+ cmd_68(cmd);
+}
+
+
+/*
+The command clears the Stat registers and intiallizes
+all values to 1. The register will read back hexadecimal 0xFF
+after the command is sent.
+
+*/
+void LTC681x_clrstat()
+{
+ uint8_t cmd[2]= {0x07 , 0x13};
+ cmd_68(cmd);
+}
+/*
+The command clears the Sctrl registers and initializes
+all values to 0. The register will read back hexadecimal 0x00
+after the command is sent.
+*/
+void LTC681x_clrsctrl()
+{
+ uint8_t cmd[2]= {0x00 , 0x18};
+ cmd_68(cmd);
+}
+//Starts the Mux Decoder diagnostic self test
+void LTC681x_diagn()
+{
+ uint8_t cmd[2] = {0x07 , 0x15};
+ cmd_68(cmd);
+}
+
+//Reads and parses the LTC681x cell voltage registers.
+uint8_t LTC681x_rdcv(uint8_t reg, // Controls which cell voltage register is read back.
+ uint8_t total_ic, // the number of ICs in the system
+ cell_asic ic[] // Array of the parsed cell codes
+ )
+{
+ int8_t pec_error = 0;
+ uint8_t *cell_data;
+ uint8_t c_ic = 0;
+ cell_data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
+
+ if (reg == 0) {
+ for (uint8_t cell_reg = 1; cell_reg<ic[0].ic_reg.num_cv_reg+1; cell_reg++) { //executes once for each of the LTC6811 cell voltage registers
+ LTC681x_rdcv_reg(cell_reg, total_ic,cell_data );
+ for (int current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ pec_error = pec_error + parse_cells(current_ic,cell_reg, cell_data,
+ &ic[c_ic].cells.c_codes[0],
+ &ic[c_ic].cells.pec_match[0]);
+ }
+ }
+ }
+
+ else {
+ LTC681x_rdcv_reg(reg, total_ic,cell_data);
+
+ for (int current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ pec_error = pec_error + parse_cells(current_ic,reg, &cell_data[8*c_ic],
+ &ic[c_ic].cells.c_codes[0],
+ &ic[c_ic].cells.pec_match[0]);
+ }
+ }
+ LTC681x_check_pec(total_ic,CELL,ic);
+ free(cell_data);
+ return(pec_error);
+}
+
+
+
+/*
+The function is used
+to read the parsed GPIO codes of the LTC6811. This function will send the requested
+read commands parse the data and store the gpio voltages in aux_codes variable
+*/
+int8_t LTC681x_rdaux(uint8_t reg, //Determines which GPIO voltage register is read back.
+ uint8_t total_ic,//the number of ICs in the system
+ cell_asic ic[]//A two dimensional array of the gpio voltage codes.
+ )
+{
+ uint8_t *data;
+ int8_t pec_error = 0;
+ uint8_t c_ic =0;
+ data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
+
+ if (reg == 0) {
+ for (uint8_t gpio_reg = 1; gpio_reg<ic[0].ic_reg.num_gpio_reg+1; gpio_reg++) { //executes once for each of the LTC6811 aux voltage registers
+ LTC681x_rdaux_reg(gpio_reg, total_ic,data); //Reads the raw auxiliary register data into the data[] array
+ for (int current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ pec_error = parse_cells(current_ic,gpio_reg, data,
+ &ic[c_ic].aux.a_codes[0],
+ &ic[c_ic].aux.pec_match[0]);
+
+ }
+ }
+ } else {
+ LTC681x_rdaux_reg(reg, total_ic, data);
+
+ for (int current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ pec_error = parse_cells(current_ic,reg, data,
+ &ic[c_ic].aux.a_codes[0],
+ &ic[c_ic].aux.pec_match[0]);
+ }
+
+ }
+ LTC681x_check_pec(total_ic,AUX,ic);
+ free(data);
+ return (pec_error);
+}
+
+// Reads and parses the LTC681x stat registers.
+int8_t LTC681x_rdstat(uint8_t reg, //Determines which Stat register is read back.
+ uint8_t total_ic,//the number of ICs in the system
+ cell_asic ic[]
+ )
+
+{
+
+ const uint8_t BYT_IN_REG = 6;
+ const uint8_t GPIO_IN_REG = 3;
+
+ uint8_t *data;
+ uint8_t data_counter = 0;
+ int8_t pec_error = 0;
+ uint16_t parsed_stat;
+ uint16_t received_pec;
+ uint16_t data_pec;
+ uint8_t c_ic = 0;
+ data = (uint8_t *) malloc((NUM_RX_BYT*total_ic)*sizeof(uint8_t));
+
+ if (reg == 0) {
+
+ for (uint8_t stat_reg = 1; stat_reg< 3; stat_reg++) { //executes once for each of the LTC6811 stat voltage registers
+ data_counter = 0;
+ LTC681x_rdstat_reg(stat_reg, total_ic,data); //Reads the raw statiliary register data into the data[] array
+
+ for (uint8_t current_ic = 0 ; current_ic < total_ic; current_ic++) { // executes for every LTC6811 in the daisy chain
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ // current_ic is used as the IC counter
+ if (stat_reg ==1) {
+ for (uint8_t current_gpio = 0; current_gpio< GPIO_IN_REG; current_gpio++) { // This loop parses the read back data into GPIO voltages, it
+ // loops once for each of the 3 gpio voltage codes in the register
+
+ parsed_stat = data[data_counter] + (data[data_counter+1]<<8); //Each gpio codes is received as two bytes and is combined to
+ ic[c_ic].stat.stat_codes[current_gpio] = parsed_stat;
+ data_counter=data_counter+2; //Because gpio voltage codes are two bytes the data counter
+
+ }
+ } else if (stat_reg == 2) {
+ parsed_stat = data[data_counter] + (data[data_counter+1]<<8); //Each gpio codes is received as two bytes and is combined to
+ data_counter = data_counter +2;
+ ic[c_ic].stat.stat_codes[3] = parsed_stat;
+ ic[c_ic].stat.flags[0] = data[data_counter++];
+ ic[c_ic].stat.flags[1] = data[data_counter++];
+ ic[c_ic].stat.flags[2] = data[data_counter++];
+ ic[c_ic].stat.mux_fail[0] = (data[data_counter] & 0x02)>>1;
+ ic[c_ic].stat.thsd[0] = data[data_counter++] & 0x01;
+ }
+
+ received_pec = (data[data_counter]<<8)+ data[data_counter+1]; //The received PEC for the current_ic is transmitted as the 7th and 8th
+ //after the 6 gpio voltage data bytes
+ data_pec = pec15_calc(BYT_IN_REG, &data[current_ic*NUM_RX_BYT]);
+
+ if (received_pec != data_pec) {
+ pec_error = -1; //The pec_error variable is simply set negative if any PEC errors
+ ic[c_ic].stat.pec_match[stat_reg-1]=1;
+ //are detected in the received serial data
+ } else {
+ ic[c_ic].stat.pec_match[stat_reg-1]=0;
+ }
+
+ data_counter=data_counter+2; //Because the transmitted PEC code is 2 bytes long the data_counter
+ //must be incremented by 2 bytes to point to the next ICs gpio voltage data
+ }
+
+
+ }
+
+ } else {
+
+ LTC681x_rdstat_reg(reg, total_ic, data);
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) { // executes for every LTC6811 in the daisy chain
+ // current_ic is used as an IC counter
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ if (reg ==1) {
+ for (uint8_t current_gpio = 0; current_gpio< GPIO_IN_REG; current_gpio++) { // This loop parses the read back data into GPIO voltages, it
+ // loops once for each of the 3 gpio voltage codes in the register
+ parsed_stat = data[data_counter] + (data[data_counter+1]<<8); //Each gpio codes is received as two bytes and is combined to
+ // create the parsed gpio voltage code
+
+ ic[c_ic].stat.stat_codes[current_gpio] = parsed_stat;
+ data_counter=data_counter+2; //Because gpio voltage codes are two bytes the data counter
+ //must increment by two for each parsed gpio voltage code
+
+ }
+ } else if (reg == 2) {
+ parsed_stat = data[data_counter++] + (data[data_counter++]<<8); //Each gpio codes is received as two bytes and is combined to
+ ic[c_ic].stat.stat_codes[3] = parsed_stat;
+ ic[c_ic].stat.flags[0] = data[data_counter++];
+ ic[c_ic].stat.flags[1] = data[data_counter++];
+ ic[c_ic].stat.flags[2] = data[data_counter++];
+ ic[c_ic].stat.mux_fail[0] = (data[data_counter] & 0x02)>>1;
+ ic[c_ic].stat.thsd[0] = data[data_counter++] & 0x01;
+ }
+
+
+ received_pec = (data[data_counter]<<8)+ data[data_counter+1]; //The received PEC for the current_ic is transmitted as the 7th and 8th
+ //after the 6 gpio voltage data bytes
+ data_pec = pec15_calc(BYT_IN_REG, &data[current_ic*NUM_RX_BYT]);
+ if (received_pec != data_pec) {
+ pec_error = -1; //The pec_error variable is simply set negative if any PEC errors
+ ic[c_ic].stat.pec_match[reg-1]=1;
+
+ }
+
+ data_counter=data_counter+2;
+ }
+ }
+ LTC681x_check_pec(total_ic,STAT,ic);
+ free(data);
+ return (pec_error);
+}
+
+//Write the LTC681x CFGRA
+void LTC681x_wrcfg(uint8_t total_ic, //The number of ICs being written to
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2] = {0x00 , 0x01} ;
+ uint8_t write_buffer[256];
+ uint8_t write_count = 0;
+ uint8_t c_ic = 0;
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == true) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (uint8_t data = 0; data<6; data++) {
+ write_buffer[write_count] = ic[c_ic].config.tx_data[data];
+ write_count++;
+ }
+ }
+ write_68(total_ic, cmd, write_buffer);
+}
+
+//Write the LTC681x CFGRB
+void LTC681x_wrcfgb(uint8_t total_ic, //The number of ICs being written to
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2] = {0x00 , 0x24} ;
+ uint8_t write_buffer[256];
+ uint8_t write_count = 0;
+ uint8_t c_ic = 0;
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == true) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (uint8_t data = 0; data<6; data++) {
+ write_buffer[write_count] = ic[c_ic].configb.tx_data[data];
+ write_count++;
+ }
+ }
+ write_68(total_ic, cmd, write_buffer);
+}
+
+//Read CFGA
+int8_t LTC681x_rdcfg(uint8_t total_ic, //Number of ICs in the system
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2]= {0x00 , 0x02};
+ uint8_t read_buffer[256];
+ int8_t pec_error = 0;
+ uint16_t data_pec;
+ uint16_t calc_pec;
+ uint8_t c_ic = 0;
+ pec_error = read_68(total_ic, cmd, read_buffer);
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (int byte=0; byte<8; byte++) {
+ ic[c_ic].config.rx_data[byte] = read_buffer[byte+(8*current_ic)];
+ }
+ calc_pec = pec15_calc(6,&read_buffer[8*current_ic]);
+ data_pec = read_buffer[7+(8*current_ic)] | (read_buffer[6+(8*current_ic)]<<8);
+ if (calc_pec != data_pec ) {
+ ic[c_ic].config.rx_pec_match = 1;
+ } else ic[c_ic].config.rx_pec_match = 0;
+ }
+ LTC681x_check_pec(total_ic,CFGR,ic);
+ return(pec_error);
+}
+
+//Reads CFGB
+int8_t LTC681x_rdcfgb(uint8_t total_ic, //Number of ICs in the system
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2]= {0x00 , 0x26};
+ uint8_t read_buffer[256];
+ int8_t pec_error = 0;
+ uint16_t data_pec;
+ uint16_t calc_pec;
+ uint8_t c_ic = 0;
+ pec_error = read_68(total_ic, cmd, read_buffer);
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (int byte=0; byte<8; byte++) {
+ ic[c_ic].configb.rx_data[byte] = read_buffer[byte+(8*current_ic)];
+ }
+ calc_pec = pec15_calc(6,&read_buffer[8*current_ic]);
+ data_pec = read_buffer[7+(8*current_ic)] | (read_buffer[6+(8*current_ic)]<<8);
+ if (calc_pec != data_pec ) {
+ ic[c_ic].configb.rx_pec_match = 1;
+ } else ic[c_ic].configb.rx_pec_match = 0;
+ }
+ LTC681x_check_pec(total_ic,CFGRB,ic);
+ return(pec_error);
+}
+
+//Looks up the result pattern for digital filter self test
+uint16_t LTC681x_st_lookup(
+ uint8_t MD, //ADC Mode
+ uint8_t ST //Self Test
+)
+{
+ uint16_t test_pattern = 0;
+ if (MD == 1) {
+ if (ST == 1) {
+ test_pattern = 0x9565;
+ } else {
+ test_pattern = 0x6A9A;
+ }
+ } else {
+ if (ST == 1) {
+ test_pattern = 0x9555;
+ } else {
+ test_pattern = 0x6AAA;
+ }
+ }
+ return(test_pattern);
+}
+
+//Clears all of the DCC bits in the configuration registers
+void clear_discharge(uint8_t total_ic, cell_asic ic[])
+{
+ for (int i=0; i<total_ic; i++) {
+ ic[i].config.tx_data[4] = 0;
+ ic[i].config.tx_data[5] = 0;
+ }
+}
+
+// Runs the Digital Filter Self Test
+int16_t LTC681x_run_cell_adc_st(uint8_t adc_reg,uint8_t total_ic, cell_asic ic[])
+{
+ int16_t error = 0;
+ uint16_t expected_result = 0;
+ for (int self_test = 1; self_test<3; self_test++) {
+
+ expected_result = LTC681x_st_lookup(2,self_test);
+ wakeup_idle(total_ic);
+ switch (adc_reg) {
+ case CELL:
+ wakeup_idle(total_ic);
+ LTC681x_clrcell();
+ LTC681x_cvst(2,self_test);
+ LTC681x_pollAdc();//this isn't working
+ wakeup_idle(total_ic);
+ error = LTC681x_rdcv(0, total_ic,ic);
+ for (int cic = 0; cic < total_ic; cic++) {
+ for (int channel=0; channel< ic[cic].ic_reg.cell_channels; channel++) {
+ if (ic[cic].cells.c_codes[channel] != expected_result) {
+ error = error+1;
+ }
+ }
+ }
+ break;
+ case AUX:
+ error = 0;
+ wakeup_idle(total_ic);
+ LTC681x_clraux();
+ LTC681x_axst(2,self_test);
+ LTC681x_pollAdc();
+ delay_m(10);
+ wakeup_idle(total_ic);
+ LTC681x_rdaux(0, total_ic,ic);
+ for (int cic = 0; cic < total_ic; cic++) {
+ for (int channel=0; channel< ic[cic].ic_reg.aux_channels; channel++) {
+ if (ic[cic].aux.a_codes[channel] != expected_result) {
+ error = error+1;
+ }
+ }
+ }
+ break;
+ case STAT:
+ wakeup_idle(total_ic);
+ LTC681x_clrstat();
+ LTC681x_statst(2,self_test);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdstat(0,total_ic,ic);
+ for (int cic = 0; cic < total_ic; cic++) {
+ for (int channel=0; channel< ic[cic].ic_reg.stat_channels; channel++) {
+ if (ic[cic].stat.stat_codes[channel] != expected_result) {
+ error = error+1;
+ }
+ }
+ }
+ break;
+
+ default:
+ error = -1;
+ break;
+ }
+ }
+ return(error);
+}
+
+//runs the redundancy self test
+int16_t LTC681x_run_adc_redundancy_st(uint8_t adc_mode, uint8_t adc_reg, uint8_t total_ic, cell_asic ic[])
+{
+ int16_t error = 0;
+ for (int self_test = 1; self_test<3; self_test++) {
+ wakeup_idle(total_ic);
+ switch (adc_reg) {
+ case AUX:
+ LTC681x_clraux();
+ LTC681x_adaxd(adc_mode,AUX_CH_ALL);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdaux(0, total_ic,ic);
+ for (int cic = 0; cic < total_ic; cic++) {
+ for (int channel=0; channel< ic[cic].ic_reg.aux_channels; channel++) {
+ if (ic[cic].aux.a_codes[channel] >= 65280) {
+ error = error+1;
+ }
+ }
+ }
+ break;
+ case STAT:
+ LTC681x_clrstat();
+ LTC681x_adstatd(adc_mode,STAT_CH_ALL);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdstat(0,total_ic,ic);
+ for (int cic = 0; cic < total_ic; cic++) {
+ for (int channel=0; channel< ic[cic].ic_reg.stat_channels; channel++) {
+ if (ic[cic].stat.stat_codes[channel] >= 65280) {
+ error = error+1;
+ }
+ }
+ }
+ break;
+
+ default:
+ error = -1;
+ break;
+ }
+ }
+ return(error);
+}
+
+//Runs the datasheet algorithm for open wire
+void LTC681x_run_openwire(uint8_t total_ic, cell_asic ic[])
+{
+ uint16_t OPENWIRE_THRESHOLD = 4000;
+ const uint8_t N_CHANNELS = ic[0].ic_reg.cell_channels;
+
+ cell_asic pullUp_cell_codes[total_ic];
+ cell_asic pullDwn_cell_codes[total_ic];
+ cell_asic openWire_delta[total_ic];
+ int8_t error;
+
+ wakeup_sleep(total_ic);
+ LTC681x_adow(MD_7KHZ_3KHZ,PULL_UP_CURRENT);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ LTC681x_adow(MD_7KHZ_3KHZ,PULL_UP_CURRENT);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdcv(0, total_ic,pullUp_cell_codes);
+
+ wakeup_idle(total_ic);
+ LTC681x_adow(MD_7KHZ_3KHZ,PULL_DOWN_CURRENT);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ LTC681x_adow(MD_7KHZ_3KHZ,PULL_DOWN_CURRENT);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdcv(0, total_ic,pullDwn_cell_codes);
+
+ for (int cic=0; cic<total_ic; cic++) {
+ ic[cic].system_open_wire =0;
+ for (int cell=0; cell<N_CHANNELS; cell++) {
+ if (pullDwn_cell_codes[cic].cells.c_codes[cell]>pullUp_cell_codes[cic].cells.c_codes[cell]) {
+ openWire_delta[cic].cells.c_codes[cell] = pullDwn_cell_codes[cic].cells.c_codes[cell] - pullUp_cell_codes[cic].cells.c_codes[cell] ;
+ } else {
+ openWire_delta[cic].cells.c_codes[cell] = 0;
+ }
+
+ }
+ }
+ for (int cic=0; cic<total_ic; cic++) {
+ for (int cell=1; cell<N_CHANNELS; cell++) {
+
+ if (openWire_delta[cic].cells.c_codes[cell]>OPENWIRE_THRESHOLD) {
+ ic[cic].system_open_wire += (1<<cell);
+
+ }
+ }
+ if (pullUp_cell_codes[cic].cells.c_codes[0] == 0) {
+ ic[cic].system_open_wire += 1;
+ }
+ if (pullUp_cell_codes[cic].cells.c_codes[N_CHANNELS-1] == 0) {
+ ic[cic].system_open_wire += (1<<(N_CHANNELS));
+ }
+ }
+}
+
+// Runs the ADC overlap test for the IC
+uint16_t LTC681x_run_adc_overlap(uint8_t total_ic, cell_asic ic[])
+{
+ uint16_t error = 0;
+ int32_t measure_delta =0;
+ int16_t failure_pos_limit = 20;
+ int16_t failure_neg_limit = -20;
+ wakeup_idle(total_ic);
+ LTC681x_adol(MD_7KHZ_3KHZ,DCP_DISABLED);
+ LTC681x_pollAdc();
+ wakeup_idle(total_ic);
+ error = LTC681x_rdcv(0, total_ic,ic);
+ for (int cic = 0; cic<total_ic; cic++) {
+ measure_delta = (int32_t)ic[cic].cells.c_codes[6]-(int32_t)ic[cic].cells.c_codes[7];
+ if ((measure_delta>failure_pos_limit) || (measure_delta<failure_neg_limit)) {
+ error = error | (1<<(cic-1));
+ }
+ }
+ return(error);
+}
+
+//Helper function that increments PEC counters
+void LTC681x_check_pec(uint8_t total_ic,uint8_t reg, cell_asic ic[])
+{
+ switch (reg) {
+ case CFGR:
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+ ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].config.rx_pec_match;
+ ic[current_ic].crc_count.cfgr_pec = ic[current_ic].crc_count.cfgr_pec + ic[current_ic].config.rx_pec_match;
+ }
+ break;
+
+ case CFGRB:
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+ ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].configb.rx_pec_match;
+ ic[current_ic].crc_count.cfgr_pec = ic[current_ic].crc_count.cfgr_pec + ic[current_ic].configb.rx_pec_match;
+ }
+ break;
+ case CELL:
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+ for (int i=0; i<ic[0].ic_reg.num_cv_reg; i++) {
+ ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].cells.pec_match[i];
+ ic[current_ic].crc_count.cell_pec[i] = ic[current_ic].crc_count.cell_pec[i] + ic[current_ic].cells.pec_match[i];
+ }
+ }
+ break;
+ case AUX:
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+ for (int i=0; i<ic[0].ic_reg.num_gpio_reg; i++) {
+ ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + (ic[current_ic].aux.pec_match[i]);
+ ic[current_ic].crc_count.aux_pec[i] = ic[current_ic].crc_count.aux_pec[i] + (ic[current_ic].aux.pec_match[i]);
+ }
+ }
+
+ break;
+ case STAT:
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+
+ for (int i=0; i<ic[0].ic_reg.num_stat_reg-1; i++) {
+ ic[current_ic].crc_count.pec_count = ic[current_ic].crc_count.pec_count + ic[current_ic].stat.pec_match[i];
+ ic[current_ic].crc_count.stat_pec[i] = ic[current_ic].crc_count.stat_pec[i] + ic[current_ic].stat.pec_match[i];
+ }
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+//Helper Function to reset PEC counters
+void LTC681x_reset_crc_count(uint8_t total_ic, cell_asic ic[])
+{
+ for (int current_ic = 0 ; current_ic < total_ic; current_ic++) {
+ ic[current_ic].crc_count.pec_count = 0;
+ ic[current_ic].crc_count.cfgr_pec = 0;
+ for (int i=0; i<6; i++) {
+ ic[current_ic].crc_count.cell_pec[i]=0;
+
+ }
+ for (int i=0; i<4; i++) {
+ ic[current_ic].crc_count.aux_pec[i]=0;
+ }
+ for (int i=0; i<2; i++) {
+ ic[current_ic].crc_count.stat_pec[i]=0;
+ }
+ }
+}
+
+//Helper function to intialize CFG variables.
+void LTC681x_init_cfg(uint8_t total_ic, cell_asic ic[])
+{
+ bool REFON = true;
+ bool ADCOPT = false;
+ bool gpioBits[5] = {true,true,true,true,true};
+ bool dccBits[12] = {false,false,false,false,false,false,false,false,false,false,false,false};
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ for (int j =0; j<6; j++) {
+ ic[current_ic].config.tx_data[j] = 0;
+ ic[current_ic].configb.tx_data[j] = 0;
+ }
+ LTC681x_set_cfgr(current_ic ,ic,REFON,ADCOPT,gpioBits,dccBits);
+
+ }
+}
+
+//Helper function to set CFGR variable
+void LTC681x_set_cfgr(uint8_t nIC, cell_asic ic[], bool refon, bool adcopt, bool gpio[5],bool dcc[12])
+{
+ LTC681x_set_cfgr_refon(nIC,ic,refon);
+ LTC681x_set_cfgr_adcopt(nIC,ic,adcopt);
+ LTC681x_set_cfgr_gpio(nIC,ic,gpio);
+ LTC681x_set_cfgr_dis(nIC,ic,dcc);
+}
+
+//Helper function to set the REFON bit
+void LTC681x_set_cfgr_refon(uint8_t nIC, cell_asic ic[], bool refon)
+{
+ if (refon) ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|0x04;
+ else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&0xFB;
+}
+
+//Helper function to set the adcopt bit
+void LTC681x_set_cfgr_adcopt(uint8_t nIC, cell_asic ic[], bool adcopt)
+{
+ if (adcopt) ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|0x01;
+ else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&0xFE;
+}
+
+//Helper function to set GPIO bits
+void LTC681x_set_cfgr_gpio(uint8_t nIC, cell_asic ic[],bool gpio[5])
+{
+ for (int i =0; i<5; i++) {
+ if (gpio[i])ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]|(0x01<<(i+3));
+ else ic[nIC].config.tx_data[0] = ic[nIC].config.tx_data[0]&(~(0x01<<(i+3)));
+ }
+}
+
+//Helper function to control discharge
+void LTC681x_set_cfgr_dis(uint8_t nIC, cell_asic ic[],bool dcc[12])
+{
+ for (int i =0; i<8; i++) {
+ if (dcc[i])ic[nIC].config.tx_data[4] = ic[nIC].config.tx_data[4]|(0x01<<i);
+ else ic[nIC].config.tx_data[4] = ic[nIC].config.tx_data[4]& (~(0x01<<i));
+ }
+ for (int i =0; i<4; i++) {
+ if (dcc[i+8])ic[nIC].config.tx_data[5] = ic[nIC].config.tx_data[5]|(0x01<<i);
+ else ic[nIC].config.tx_data[5] = ic[nIC].config.tx_data[5]&(~(0x01<<i));
+ }
+}
+
+//Helper Function to set uv value in CFG register
+void LTC681x_set_cfgr_uv(uint8_t nIC, cell_asic ic[],uint16_t uv)
+{
+ uint16_t tmp = (uv/16)-1;
+ ic[nIC].config.tx_data[1] = 0x00FF & tmp;
+ ic[nIC].config.tx_data[2] = ic[nIC].config.tx_data[2]&0xF0;
+ ic[nIC].config.tx_data[2] = ic[nIC].config.tx_data[2]|((0x0F00 & tmp)>>8);
+}
+
+//helper function to set OV value in CFG register
+void LTC681x_set_cfgr_ov(uint8_t nIC, cell_asic ic[],uint16_t ov)
+{
+ uint16_t tmp = (ov/16);
+ ic[nIC].config.tx_data[3] = 0x00FF & (tmp>>4);
+ ic[nIC].config.tx_data[2] = ic[nIC].config.tx_data[2]&0x0F;
+ ic[nIC].config.tx_data[2] = ic[nIC].config.tx_data[2]|((0x000F & tmp)<<4);
+}
+
+//Writes the comm register
+void LTC681x_wrcomm(uint8_t total_ic, //The number of ICs being written to
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2]= {0x07 , 0x21};
+ uint8_t write_buffer[256];
+ uint8_t write_count = 0;
+ uint8_t c_ic = 0;
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == true) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (uint8_t data = 0; data<6; data++) {
+ write_buffer[write_count] = ic[c_ic].com.tx_data[data];
+ write_count++;
+ }
+ }
+ write_68(total_ic, cmd, write_buffer);
+}
+
+/*
+Reads COMM registers of a LTC6811 daisy chain
+*/
+int8_t LTC681x_rdcomm(uint8_t total_ic, //Number of ICs in the system
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2]= {0x07 , 0x22};
+ uint8_t read_buffer[256];
+ int8_t pec_error = 0;
+ uint16_t data_pec;
+ uint16_t calc_pec;
+ uint8_t c_ic=0;
+ pec_error = read_68(total_ic, cmd, read_buffer);
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+
+ for (int byte=0; byte<8; byte++) {
+ ic[c_ic].com.rx_data[byte] = read_buffer[byte+(8*current_ic)];
+ }
+ calc_pec = pec15_calc(6,&read_buffer[8*current_ic]);
+ data_pec = read_buffer[7+(8*current_ic)] | (read_buffer[6+(8*current_ic)]<<8);
+ if (calc_pec != data_pec ) {
+ ic[c_ic].com.rx_pec_match = 1;
+ } else ic[c_ic].com.rx_pec_match = 0;
+ }
+ return(pec_error);
+}
+
+/*
+Shifts data in COMM register out over LTC6811 SPI/I2C port
+*/
+void LTC681x_stcomm()
+{
+
+ uint8_t cmd[4];
+ uint16_t cmd_pec;
+
+ cmd[0] = 0x07;
+ cmd[1] = 0x23;
+ cmd_pec = pec15_calc(2, cmd);
+ cmd[2] = (uint8_t)(cmd_pec >> 8);
+ cmd[3] = (uint8_t)(cmd_pec);
+
+ //spi2_CS = 0;
+ spi_write_array(4,cmd);
+ for (int i = 0; i<9; i++) {
+ spi_read_byte(0xFF);
+ }
+ //spi2_CS = 1;
+
+}
+
+// Writes the pwm register
+void LTC681x_wrpwm(uint8_t total_ic,
+ uint8_t pwmReg,
+ cell_asic ic[]
+ )
+{
+ uint8_t cmd[2];
+ uint8_t write_buffer[256];
+ uint8_t write_count = 0;
+ uint8_t c_ic = 0;
+ if (pwmReg == 0) {
+ cmd[0] = 0x00;
+ cmd[1] = 0x20;
+ } else {
+ cmd[0] = 0x00;
+ cmd[1] = 0x1C;
+ }
+
+ for (uint8_t current_ic = 0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == true) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ for (uint8_t data = 0; data<6; data++) {
+ write_buffer[write_count] = ic[c_ic].pwm.tx_data[data];
+ write_count++;
+ }
+ }
+ write_68(total_ic, cmd, write_buffer);
+}
+
+
+/*
+Reads pwm registers of a LTC6811 daisy chain
+*/
+int8_t LTC681x_rdpwm(uint8_t total_ic, //Number of ICs in the system
+ uint8_t pwmReg,
+ cell_asic ic[]
+ )
+{
+// const uint8_t BYTES_IN_REG = 8;
+
+ uint8_t cmd[4];
+ uint8_t read_buffer[256];
+ int8_t pec_error = 0;
+ uint16_t data_pec;
+ uint16_t calc_pec;
+ uint8_t c_ic = 0;
+
+ if (pwmReg == 0) {
+ cmd[0] = 0x00;
+ cmd[1] = 0x22;
+ } else {
+ cmd[0] = 0x00;
+ cmd[1] = 0x1E;
+ }
+
+
+ pec_error = read_68(total_ic, cmd, read_buffer);
+ for (uint8_t current_ic =0; current_ic<total_ic; current_ic++) {
+ if (ic->isospi_reverse == false) {
+ c_ic = current_ic;
+ } else {
+ c_ic = total_ic - current_ic - 1;
+ }
+ for (int byte=0; byte<8; byte++) {
+ ic[c_ic].pwm.rx_data[byte] = read_buffer[byte+(8*current_ic)];
+ }
+ calc_pec = pec15_calc(6,&read_buffer[8*current_ic]);
+ data_pec = read_buffer[7+(8*current_ic)] | (read_buffer[6+(8*current_ic)]<<8);
+ if (calc_pec != data_pec ) {
+ ic[c_ic].pwm.rx_pec_match = 1;
+ } else ic[c_ic].pwm.rx_pec_match = 0;
+ }
+ return(pec_error);
+}