File content as of revision 0:7251441ac366:
/* Copyright (C) 2014 Murata Manufacturing Co.,Ltd., MIT License
* muRata, SWITCH SCIENCE Wi-FI module TypeYD SNIC-UART.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge, publish, distribute,
* sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "mbed.h"
#include "SNIC_Core.h"
#include "SNIC_UartMsgUtil.h"
#include <string>
/** Wait signal ID of UART recv */
#define UART_DISPATCH_SIGNAL 0x00000002
#define UART_RECVBUF_SIZE 2048
#define UART_THREAD_STACK_SIZE 512
#define UART_FIXED_HEADER_SIZE 3
#define UART_FIXED_SIZE_IN_FRAME 6
#define UART_RECV_QUEUE_TIMEOUT 500
typedef struct
{
tagMEMPOOL_BLOCK_T *mem_p;
unsigned int size;
}tagUART_RECVBUF_T;
/*
Define the global buffer using the area for Ethernet.
*/
unsigned char gUART_TEMP_BUF[UART_RECVBUF_SIZE] __attribute__((section("AHBSRAM1")));
unsigned char gUART_COMMAND_BUF[UART_REQUEST_PAYLOAD_MAX] __attribute__((section("AHBSRAM1")));
/** MemoryPool for payload of UART response */
//MemoryPool<tagMEMPOOL_BLOCK_T, MEMPOOL_PAYLOAD_NUM> mMemPoolPayload __attribute__((section("AHBSRAM1")));
MemoryPool<tagMEMPOOL_BLOCK_T, MEMPOOL_PAYLOAD_NUM> mMemPoolPayload __attribute__((section("AHBSRAM0")));
/** MemoryPool for UART receive */
MemoryPool<tagMEMPOOL_BLOCK_T, MEMPOOL_UART_RECV_NUM> mMemPoolUartRecv __attribute__((section("AHBSRAM0")));
Queue<tagMEMPOOL_BLOCK_T, MEMPOOL_UART_RECV_NUM> mUartRecvQueue;
tagMEMPOOL_BLOCK_T *gUART_RCVBUF_p;
int gUART_RECV_COUNT = 0;
C_SNIC_Core *C_SNIC_Core::mInstance_p = NULL;
C_SNIC_Core *C_SNIC_Core::getInstance()
{
if( mInstance_p == NULL )
{
mInstance_p = new C_SNIC_Core();
}
return mInstance_p;
}
C_SNIC_Core::C_SNIC_Core()
{
int i;
mUartCommand_p = new C_SNIC_UartCommandManager();
for( i = 0; i < MAX_SOCKET_ID+1; i++ )
{
mConnectInfo[i].recvbuf_p = NULL;
mConnectInfo[i].is_connected = false;
mConnectInfo[i].is_receive_complete = true;
mUdpRecvInfo[i].recvbuf_p = NULL;
mUdpRecvInfo[i].is_received = false;
}
mUartRecvThread_p = NULL;
mUartRecvDispatchThread_p = NULL;
}
C_SNIC_Core::~C_SNIC_Core()
{
}
int C_SNIC_Core::resetModule( PinName reset )
{
DigitalOut reset_pin( reset );
reset_pin = 0;
wait(0.3);
reset_pin = 1;
wait(0.3);
return 0;
}
int C_SNIC_Core::initUart(PinName tx, PinName rx, int baud)
{
mUartRequestSeq = 0;
mUart_p = new RawSerial( tx, rx );
mUart_p->baud( baud );
mUart_p->format(8, SerialBase::None, 1);
// Initialize uart
gUART_RCVBUF_p = NULL;
mUart_p->attach( C_SNIC_Core::uartRecvCallback );
// Create UART recv dispatch thread
mUartRecvDispatchThread_p = new Thread( C_SNIC_Core::uartRecvDispatchThread, NULL, osPriorityNormal, UART_THREAD_STACK_SIZE);
if( mUartRecvDispatchThread_p == NULL )
{
DEBUG_PRINT("[C_SNIC_Core::initUart] thread create failed\r\n");
return -1;
}
return 0;
}
unsigned int C_SNIC_Core::preparationSendCommand( unsigned char cmd_id, unsigned char cmd_sid
, unsigned char *req_buf_p, unsigned int req_buf_len
, unsigned char *response_buf_p, unsigned char *command_p )
{
unsigned int command_len = 0;
// Make all command request
command_len = C_SNIC_UartMsgUtil::makeRequest( cmd_id, req_buf_p, req_buf_len, command_p );
// Set data for response
mUartCommand_p->setCommandID( cmd_id );
mUartCommand_p->setCommandSID( cmd_sid | 0x80 );
mUartCommand_p->setResponseBuf( response_buf_p );
return command_len;
}
int C_SNIC_Core::sendUart( unsigned int len, unsigned char *data )
{
int ret = 0;
mUartMutex.lock();
for( int i = 0; i < len; i++ )
{
// Write to UART
ret = mUart_p->putc( data[i] );
if( ret == -1 )
{
break;
}
}
mUartMutex.unlock();
return ret;
}
tagMEMPOOL_BLOCK_T *C_SNIC_Core::allocCmdBuf()
{
// Get buffer from MemoryPool
return mMemPoolPayload.alloc();
}
void C_SNIC_Core::freeCmdBuf( tagMEMPOOL_BLOCK_T *buf_p )
{
mMemPoolPayload.free( buf_p );
}
tagMEMPOOL_BLOCK_T *C_SNIC_Core::allocUartRcvBuf()
{
// Get buffer from MemoryPool
return mMemPoolUartRecv.alloc();
}
void C_SNIC_Core::freeUartRecvBuf( tagMEMPOOL_BLOCK_T *buf_p )
{
mMemPoolUartRecv.free( buf_p );
}
C_SNIC_Core::tagCONNECT_INFO_T *C_SNIC_Core::getConnectInfo( int socket_id )
{
if( (socket_id < 0) || (socket_id > MAX_SOCKET_ID) )
{
return NULL;
}
return &mConnectInfo[socket_id];
}
C_SNIC_Core::tagUDP_RECVINFO_T *C_SNIC_Core::getUdpRecvInfo( int socket_id )
{
if( (socket_id < 0) || (socket_id > MAX_SOCKET_ID) )
{
return NULL;
}
return &mUdpRecvInfo[socket_id];
}
C_SNIC_UartCommandManager *C_SNIC_Core::getUartCommand()
{
return mUartCommand_p;
}
unsigned char *C_SNIC_Core::getCommandBuf()
{
return gUART_COMMAND_BUF;
}
void C_SNIC_Core::lockAPI( void )
{
mAPIMutex.lock();
}
void C_SNIC_Core::unlockAPI( void )
{
mAPIMutex.unlock();
}
void C_SNIC_Core::uartRecvCallback( void )
{
C_SNIC_Core *instance_p = C_SNIC_Core::getInstance();
if( instance_p != NULL )
{
int recvdata = 0;
// Check received data from UART.
while( instance_p->mUart_p->readable() )
{
// Receive data from UART.
recvdata = instance_p->mUart_p->getc();
// Check UART receiving buffer
if( gUART_RCVBUF_p != NULL )
{
gUART_RCVBUF_p->buf[ gUART_RCVBUF_p->size ] = (unsigned char)recvdata;
gUART_RCVBUF_p->size++;
if( gUART_RCVBUF_p->size == UART_FIXED_HEADER_SIZE )
{
// get demand size
unsigned short payload_len = ( ( (gUART_RCVBUF_p->buf[1] & ~0x80) & 0xff) | ( ( (gUART_RCVBUF_p->buf[2] & ~0xC0) << 7) & 0xff80) );
gUART_RCVBUF_p->demand_size = payload_len + UART_FIXED_SIZE_IN_FRAME;
if( gUART_RCVBUF_p->demand_size > MEMPOOL_BLOCK_SIZE )
{
gUART_RCVBUF_p->demand_size = MEMPOOL_BLOCK_SIZE;
}
}
if( gUART_RCVBUF_p->demand_size > 0 )
{
// Check size of received data.
if( gUART_RCVBUF_p->size >= gUART_RCVBUF_p->demand_size )
{
// Add queue
mUartRecvQueue.put( gUART_RCVBUF_p );
gUART_RCVBUF_p = NULL;
if( gUART_RECV_COUNT >= MEMPOOL_UART_RECV_NUM )
{
instance_p->mUart_p->attach( NULL );
}
// set signal for dispatch thread
instance_p->mUartRecvDispatchThread_p->signal_set( UART_DISPATCH_SIGNAL );
break;
}
}
}
else
{
// Check received data is SOM.
if( recvdata == UART_CMD_SOM )
{
gUART_RCVBUF_p = instance_p->allocUartRcvBuf();
gUART_RECV_COUNT++;
gUART_RCVBUF_p->size = 0;
gUART_RCVBUF_p->demand_size = 0;
// get buffer for Uart receive
gUART_RCVBUF_p->buf[ 0 ] = (unsigned char)recvdata;
gUART_RCVBUF_p->size++;
}
}
}
}
}
void C_SNIC_Core::uartRecvDispatchThread (void const *args_p)
{
C_SNIC_Core *instance_p = C_SNIC_Core::getInstance();
C_SNIC_UartCommandManager *uartCmdMgr_p = instance_p->getUartCommand();
tagMEMPOOL_BLOCK_T *uartRecvBuf_p;
osEvent evt;
for(;;)
{
// wait
Thread::signal_wait( UART_DISPATCH_SIGNAL );
// Get scanresults from queue
evt = mUartRecvQueue.get(UART_RECV_QUEUE_TIMEOUT);
if (evt.status == osEventMessage)
{
do
{
uartRecvBuf_p = (tagMEMPOOL_BLOCK_T *)evt.value.p;
#if 0 /* for Debug */
{
int i;
for(i=0;i<uartRecvBuf_p->size;i++)
{
DEBUG_PRINT("%02x", uartRecvBuf_p->buf[i]);
}
DEBUG_PRINT("\r\n");
}
#endif
unsigned char command_id;
// Get payload from received data from UART.
int payload_len = C_SNIC_UartMsgUtil::getResponsePayload( uartRecvBuf_p->size, uartRecvBuf_p->buf
, &command_id, gUART_TEMP_BUF );
// Check receive a TCP packet
if( (command_id == UART_CMD_ID_SNIC) && (gUART_TEMP_BUF[0] == UART_CMD_SID_SNIC_CONNECTION_RECV_IND) )
{
// Packet buffering
uartCmdMgr_p->bufferredPacket( gUART_TEMP_BUF, payload_len );
}
// Check connected from TCP client
else if( (command_id == UART_CMD_ID_SNIC) && (gUART_TEMP_BUF[0] == UART_CMD_SID_SNIC_TCP_CLIENT_SOCKET_IND) )
{
// Connected from TCP client
uartCmdMgr_p->connectedTCPClient( gUART_TEMP_BUF, payload_len );
}
// Check receive UDP packet
else if( (command_id == UART_CMD_ID_SNIC) && (gUART_TEMP_BUF[0] == UART_CMD_SID_SNIC_UDP_RECV_IND) )
{
// UDP packet buffering
uartCmdMgr_p->bufferredUDPPacket( gUART_TEMP_BUF, payload_len );
}
// Check scan results indication
else if( (command_id == UART_CMD_ID_WIFI) && (gUART_TEMP_BUF[0] == UART_CMD_SID_WIFI_SCAN_RESULT_IND) )
{
// Scan result indicate
uartCmdMgr_p->scanResultIndicate( gUART_TEMP_BUF, payload_len );
}
// Checks in the command which is waiting.
else if( uartCmdMgr_p->isWaitingCommand(command_id, gUART_TEMP_BUF) )
{
// Get buffer for payload data
unsigned char *payload_buf_p = uartCmdMgr_p->getResponseBuf();
if( payload_buf_p != NULL )
{
memcpy( payload_buf_p, gUART_TEMP_BUF, payload_len );
uartCmdMgr_p->setResponseBuf( NULL );
}
// Set status
uartCmdMgr_p->setCommandStatus( gUART_TEMP_BUF[2] );
// Set signal for command response wait.
uartCmdMgr_p->signal();
}
else
{
//DEBUG_PRINT(" The received data is not expected.\r\n");
}
//
instance_p->freeUartRecvBuf( uartRecvBuf_p );
gUART_RECV_COUNT--;
if( gUART_RECV_COUNT == (MEMPOOL_UART_RECV_NUM-1) )
{
instance_p->mUart_p->attach( C_SNIC_Core::uartRecvCallback ); //debug
}
evt = mUartRecvQueue.get(500);
} while( evt.status == osEventMessage );
}
}
}